Preview

Bulletin of Siberian Medicine

Advanced search

Cardiometabolic and echocardiographic characteristics of the cardiovascular phenotype of post COVID-19 syndrome

https://doi.org/10.20538/1682-0363-2025-3-25-33

Abstract

Aim. To study the cardiometabolic and echocardiographic characteristics of COVID-19 convalescents, including patients with the cardiovascular phenotype of post-COVID syndrome (PСS).

Materials and methods. The sample included 270 COVID-19 convalescents (62 without PСS and 208 with PСS). In the subgroup with PCC, 16 convalescents had a cardiovascular phenotype. The study took into account the data of anamnesis, anthropometry, several clinical and biochemical blood parameters, and instrumental diagnostic data (electrocardiography and echocardiography).

Results.       In the subgroup with PСS (n = 208), fasting plasma glucose levels were 1.10 times higher (p < 0.001), abdominal obesity (AO) was 5.52 times more common (p < 0.001), arterial hypertension (AH) was 4.96 times more common (p < 0.001), diastolic dysfunction grade I was 5.55 times more common (p = 0.002), and left ventricular hypertrophy was 7 times more common (p = 0.005). The indices of maximum blood flow velocity and pressure gradient in the pulmonary artery in convalescents with PCS were 1.08-fold (p = 0.020) and 1.14-fold (p = 0.043) lower, respectively. In COVID-19 convalescents with PCS (n = 16) and a cardiovascular phenotype, total cholesterol (TC) was 1.11 times higher (p = 0.039), low-density lipoprotein cholesterol (LDL-C) was 1.21 times higher (p = 0.004), high-density lipoprotein cholesterol (HDL-C) was 1.22 times lower (p = 0.040), non-highdensity lipoprotein cholesterol (non-HDL-C) was 1.24 times higher (p = 0.005) compared with patients without a cardiovascular phenotype. An increase in TC, LDL-C, and non-HDL-C and a decrease in HDL-C are associated with the cardiovascular phenotype of PCS regardless of gender, age, body mass index, and lipid-lowering therapy. Conclusion. According to the study, echocardiographic changes and cardiometabolic risk factors, such as AO, AH, and carbohydrate metabolism disorders, were more common in patients with PСS. The cardiovascular phenotype of PСS is associated with an increase in TC, LDL-C, non-HDL-C, and a decrease in HDL-C.

About the Authors

V. V. Zorina
Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (ICG SB RAS)
Russian Federation

10 Lavrentjev Ave., 630090 Novosibirsk


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



E. V. Garbuzova
Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (RIIPM, Branch of ICG SB RAS)
Russian Federation

175/1 B. Bogatkov St., 630089 Novosibirsk


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



A. D. Afanaseva
Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (RIIPM, Branch of ICG SB RAS)
Russian Federation

175/1 B. Bogatkov St., 630089 Novosibirsk


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



Yu. V. Shchepina
Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (RIIPM, Branch of ICG SB RAS)
Russian Federation

175/1 B. Bogatkov St., 630089 Novosibirsk


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



Yu. Y. Palekhina
Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (RIIPM, Branch of ICG SB RAS)
Russian Federation

175/1 B. Bogatkov St., 630089 Novosibirsk


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



V. S. Shramko
Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (RIIPM, Branch of ICG SB RAS)
Russian Federation

175/1 B. Bogatkov St., 630089 Novosibirsk


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



E. V. Shakhtschneider
Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (RIIPM, Branch of ICG SB RAS)
Russian Federation

175/1 B. Bogatkov St., 630089 Novosibirsk


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



I. I. Logvinenko
Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (RIIPM, Branch of ICG SB RAS)
Russian Federation

175/1 B. Bogatkov St., 630089 Novosibirsk


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article



References

1. Ferrario C.M., Trask A.J., Jessup J.A. Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function. Am. J. Physiol. Heart Circ. Physiol .2005;289(6):2281–2290. DOI: 10.1152/ajpheart.00618.2005.

2. Jia H.P., Look D.C., Hickey M., Shi L., Pewe L., Netland J. et al. Infection of human airway epithelia by SARS coronavirus is associated with ACE2 expression and localization. Adv. Exp. Med. Biol. 2006;581:479–484. DOI: 10.1007/978-0-38733012-9_85.

3. Raman В., Bluemke D.A., Lüscher T.F., Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 2022;43(11):1157–1172. DOI: 10.1093/eurheartj/ehac031.

4. Soriano J.B., Murthy S., Marshall J.C., Relan P., Diaz J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022;22(4):e102–e107. DOI: 10.1016/S1473-3099(21)00703-9.

5. Дедов И.И., Мокрышева Н.Г., Мельниченко Г.А., Трошина Е.А., Мазурина Н.В., Ершова Е.В. и др. Ожирение. Клинические рекомендации. Consilium Medicum. 2021;23(4):311–325. DOI: 10.26442/20751753.2021.4.200832.

6. Devereux R.B., Reichek N. Echocardiographic determination of left ventricular mass in man: anatomic validation of the method. Circulation. 1977;55(4):613–618. DOI: 10.1161/01.cir.55.4.613.

7. Du Bois D., Du Bois E.F. A formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 1916;17:863–871. DOI: 10.1001/archinte.1916.00080130010002.

8. Флакскампф Ф.А. Курс эхокардиографии. М.: Медпресс информ, 2016:328.

9. Клинические рекомендации. Артериальная гипертензия. Российское кардиологическое общество. 2020.

10. Российское кардиологическое общество (РКО) Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4083. DOI: 10.15829/15604071-2020-4083.

11. Атеросклероз и дислипидемии. Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Российские рекомендации, VII пересмотр. 2020;1(38):7–42. DOI: 10.34687/2219-8202.JAD.2020.01.0002.

12. Chen C., Zhou Y., Wang D.W. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020;45(3):230–232. DOI: 10.1007/s00059-020-04909-z.

13. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. DOI: 10.1016/S0140-6736(20)30183-5.

14. Guzik T.J., Mohiddin S.A., Dimarco A., Patel V., Savvatis K., Marelli-Berg F.M. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res. 2020;116(10):1666–1687. DOI: 10.1093/cvr/cvaa106.

15. Giustino G., Croft L.B., Stefanini G.G., Bragato R., Silbiger J.J., Vicenzi M. et al. Characterization of myocardial injury in patients with COVID-19. J. Am. Coll. Cardiol. 2020;76(18):2043–2055. DOI: 10.1016/j.jacc.2020.08.069.

16. Shang L., Wang L., Zhou F., Li J., Liu Y.,Yang S. Long-term of obesity on COVID-19 patients discharged from hospital. Immun. Inflamm. Dis. 2021;9(4):1678–1685. DOI: 10.1002/iid3.522.

17. Kim H.W., de Chantemèle E.J.B., Weintraub N.L. Perivas cular adipocytes in vascular disease. Arterioscler. Thromb. Vasc. Biol. 2019;39(11):2220–2227. DOI: 10.1161/atvbaha.119.312304.

18. Zhang J., Wu J., Sun X., Xue H., Shao J., Cai W. et al. Association of hypertension with the severity and fatality of SARS-CoV-2 infection: a meta-analysis. Epidemiol. Infect. 2020;28:148:e106. DOI: 10.1017/S095026882000117X.

19. Bauer A.Z., Gore R., Sama S.R., Rosiello R., Garber L., Sundaresan D. et al. Hypertension, medications, and risk of severe COVID-19: a Massachusetts community-based observational study. J. Clin. Hypertens (Greenwich). 2021;23(1):21–27. DOI: 10.1111/jch.14101.

20. Dweck M.R., Bularga A., Hahn R.T., Bing R., Lee K.K., Chapman A.R. et al. Global evaluation of echocardiography in patients with COVID19. Eur. Heart J. Cardiovasc. Imaging. 2020;21(9):949–958. DOI: 10.1093/ehjci/jeaa178.

21. Ярославская Е.И., Криночкин Д.В., Широков Н.Е., Горбатенко Е.А., Криночкина И.Р., Гультяева Е.П. и др. Сравнение клинических и эхокардиографических показателей пациентов, перенесших пневмонию COVID-19, через три месяца и через год после выписки. Кардиология. 2022;62(1):13–23. DOI: 10.18087/cardio.2022.1.n1859.

22. Канорский С.Г., Панченко Д.И., Быстров А.О., Мойсова Д.Л., Городин В.Н., Ионов А.Ю. Эхокардиографические изменения у лиц, перенесших COVID-19, через 6 и 12 месяцев после выписки из стационара Международный журнал сердца и сосудистых заболеваний. 2023;11(37):17–24.

23. Serviente C., Decker S.T., Layec G. From heart to muscle: pathophysiological mechanisms underlying long-term physical sequelae from SARS-CoV-2 infection. J. Appl. Physiol. (1985). 2022;132(3):581–592. DOI: 10.1152/japplphysiol.00734.2021.

24. Sorokin A.V., Karathanasis S.K., Yang Z.H., Freeman L., Kotani K., Remaley A.T. COVID-19-Associated dyslipidemia: implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB J. 2020;34:9843–9853. DOI: 10.1096/ fj.202001451.

25. Dennis A., Wamil M., Alberts J., Oben J., Cuthbertson D.J., Wootton D. et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: A prospective, community-Based study. BMJ Open. 2021;11(3):e048391. DOI: 10.1136/bmjopen-2020-048391.

26. Washirasaksiri С., Sayabovorn N., Ariyakunaphan P., Kositamongkol C., Chaisathaphol T., Sitasuwan T. et al. Longterm multiple metabolic abnormalities among healthy and high-risk people following nonsevere COVID-19. Sci. Rep. 2023;13(1):14336. DOI: 10.1038/s41598-023-41523-5.


Review

For citations:


Zorina V.V., Garbuzova E.V., Afanaseva A.D., Shchepina Yu.V., Palekhina Yu.Y., Shramko V.S., Shakhtschneider E.V., Logvinenko I.I. Cardiometabolic and echocardiographic characteristics of the cardiovascular phenotype of post COVID-19 syndrome. Bulletin of Siberian Medicine. 2025;24(3):25-33. (In Russ.) https://doi.org/10.20538/1682-0363-2025-3-25-33

Views: 98


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)