Hydrodynamic performance of a composite heart valve prosthesis
https://doi.org/10.20538/1682-0363-2025-3-52-58
Abstract
The aim of the study was to conduct a hydrodynamic assessment of the efficiency of heart valve prostheses made of xenopericardium protected by polyvinyl alcohol.
Materials and methods. Experimental prostheses based on the UniLine bioprosthesis model were manufactured for the study. The xenopericardium used for the valve cusps was modified with polyvinyl alcohol to improve its resistance to biological and mechanical effects. Hydrodynamic tests were performed on a Pulse Duplicator system, which simulates the function of the “left heart”. The key parameters of the prosthesis operation were estimated including average transprosthetic gradient, effective orifice area, locking volume, and regurgitant volume. Unmodified prostheses of similar size were used as a control.
Results. Hydrodynamic tests showed that the experimental prostheses demonstrate an increase in the average transprosthetic gradient to 6.59 mm Hg. (compared to 5.29 mm Hg in the control group) and a decrease in the effective orifice area to 1.52 cm² (1.69 cm² in the control group). The regurgitant volume also increased to 23.3 ml per cycle, which is higher than the control value of 12.2 ml per cycle. Despite this, all indicators remain within the permissible values established by the state standard (GOST).
Conclusion. The use of polyvinyl alcohol to protect the xenopericardium demonstrates potential advantages such as increased resistance of the material to biological effects, but is accompanied by some decrease in the hydrodynamics of the prosthesis. Nevertheless, the efficiency indicators remain within the standards, which opens up opportunities for further improvement of the technology. It is necessary to continue research in order to optimize the material and design to improve both the biocompatibility and functional characteristics of the prosthesis.
Keywords
About the Authors
K. Yu. KlyshnikovRussian Federation
6 Sosnoviy Blvd., 650002 Kemerovo
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article
A. E. Kostyunin
Russian Federation
6 Sosnoviy Blvd., 650002 Kemerovo
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article
P. S. Onishchenko
Russian Federation
6 Sosnoviy Blvd., 650002 Kemerovo
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article
T. V. Glushkova
Russian Federation
6 Sosnoviy Blvd., 650002 Kemerovo
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article
T. N. Akentyeva
Russian Federation
6 Sosnoviy Blvd., 650002 Kemerovo
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article
N. N. Borisova
Russian Federation
6 Sosnoviy Blvd., 650002 Kemerovo
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article
A. G. Kutikhin
Russian Federation
6 Sosnoviy Blvd., 650002 Kemerovo
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article
E. A. Ovcharenko
Russian Federation
6 Sosnoviy Blvd., 650002 Kemerovo
Competing Interests:
The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article
References
1. Virani S.S., Alonso A., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P. et al. Heart Disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–e596. DOI: 10.1161/CIR.0000000000000757.
2. Бокерия Л.А., Милиевская Е.Б., Прянишников В.В., Юрлов И.А. Сердечно-сосудистая хирургия-2022. Болезни и врожденные аномалии системы кровообращения. НМИЦ ССХ им. А.Н. Бакулева, 2023.
3. Алекян Б.Г., Григорьян А.М., Стаферов А.В., Карапетян Н.Г. Рентгенэндоваскулярная диагностика и лечение заболеваний сердца и сосудов в Российской Федерации – 2021 год. Эндоваскулярная хирургия. 2022;9:1–254. DOI: 10.24183/2409-4080-2022-9S.
4. Oveissi F., Naficy S., Lee A., Winlaw D.S., Dehghani F. Materials and manufacturing perspectives in engineering heart valves: a review. Mater. Today Bio. 2020;5:100038. DOI: 10.1016/j.mtbio.2019.100038.
5. Mohammadi H., Mequanint K. Prosthetic aortic heart valves: Modeling and design. Med. Eng. Phys. 2011;33(2):131–147. DOI: 10.1016/j.medengphy.2010.09.017.
6. Барбараш Л.С., Журавлева И.Ю. Эволюция биопротезов клапанов сердца: достижения и проблемы двух десятилетий. Комплексные проблемы сердечно-сосудистых заболеваний. 2012;1:4–11.
7. Глушкова Т.В., Костюнин А.Е. Структура кальцификатов в биопротезах клапанов сердца, консервированных диглицидиловым эфиром этиленгликоля. Комплексные проблемы сердечно-сосудистых заболеваний. 2021;10(2):16–24. DOI: 10.17802/2306-1278-2021-10-2-16-24.
8. Rotman O.M., Kovarovic B., Chiu W.-C., Bianchi M., Marom G., Slepian M.J. et al. Novel Polymeric Valve for Transcatheter Aortic Valve Replacement Applications: In Vitro Hemodynamic Study. Ann. Biomed. Eng. 2019;47(1):113–125. DOI: 10.1007/s10439-018-02119-7.
9. Motta S.E., Falk V., Hoerstrup S.P., Emmert M.Y. Polymeric valves appearing on the transcatheter horizon. Eur. J. Cardio-Thoracic Surg. 2021;59(5):1057–1058. DOI: 10.1093/ejcts/ezab089.
10. Singh S.K., Kachel M., Castillero E., Xue Y., Kalfa D., Ferrari G. et al. Polymeric prosthetic heart valves: A review of current technologies and future directions. Front. Cardiovasc. Med. 2023;10. DOI: 10.3389/fcvm.2023.1137827.
11. Claiborne T.E., Xenos M., Sheriff J., Chiu W.-C., Soares J., Alemu Y. et al. Toward optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation. ASAIO J. 2013;59(3):275–283. DOI: 10.1097/MAT.0b013e31828e4d80.
12. De Gaetano F., Bagnoli P., Zaffora A., Pandolfi A., Serrani M., Bruberrt J. et al. A newly developed tri-leaflet polymeric heart valve prosthesis. J. Mech. Med. Biol. 2015;15(02):1540009. DOI: 10.1142/S0219519415400096.
13. Stasiak J.R., Serrani M., Biral E., Taylor J.V., Zaman A.G., Jones S. et al. Design, development, testing at ISO standards and: In vivo feasibility study of a novel polymeric heart valve prosthesis. Biomater. Sci. 2020;8(16):4467–4480. DOI: 10.1039/d0bm00412j.
14. Бондаренко Н.А., Суровцева М.А., Лыков А.П., Ким И.И., Журавлева И.Ю., Повещенко О.В. Цитотоксичность ксеногенного перикарда, консервированного эпоксидными соединениями в качестве сшивающих агентов. Современные технологии в медицине. 2021;13(4):27. DOI: 10.17691/stm2021.13.4.03.
15. Тимченко Т.П. Бисфосфонаты как потенциальные ингибиторы кальцификации биопротезов клапанов сердца. Современные технологии в медицине. 2022;14(2):68–79. DOI: 10.17691/stm2022.14.2.07.
16. Ovcharenko Е.А., Glushkova T.V., Shishkova D.K., Rezvova M.A., Velikanova E.A., Klyshnikov K.Y. et al. Anti-adhesive properties of epoxy-treated xenopericardium modified with polyvinyl alcohol: in vitro study of leukocyte ad hesion in the pulsatile flow model. Sovrem. Tehnol. Med 2024;16(2):40–46. DOI: 10.17691/stm2024.16.2.04.
17. Susin F.M., Bagno A., Gerosa G. Hydrodynamic performance of heart valve prostheses: Open discussion on European Committee for Standardization International Organization for Standardization standard 5840. J. Thorac. Cardiovasc. Surg. 2010;139(5):1356–1357. DOI: 10.1016/j.jtcvs.2010.01.025.
18. Козлов Б.Н., Петлин К.А., Пряхин А.С., Середкина Е.Б., Панфилов Д.С., Шипулин В.М. Непосредственные и отдаленные результаты применения биопротезов «ЮниЛайн» в аортальной позиции. Клиническая и экспериментальная хирургия. Журнал имени академика Б.В. Петровского. 2017;5(4(18)):37–42.
19. Караськов А.М., Железнев С.И., Рогулина Н.В., Сапегин А.В., Одаренко Ю.Н., Левадин Ю.В. и др. Отечественный биологический протез нового поколения «ЮниЛайн» в хирургии митрального порока: первый опыт. Грудная и сердечно-сосудистая хирургия. 2017;59(2):98–104. DOI: 10.24022/0236-2791-2017-59-2-98-104.
20. Студеникина Л.Н., Домарева С.Ю., Голенских Ю.Е., Матвеева А.В., Мельников А.А. Повышение прочности и водостойкости материалов на основе поливинилового спирта с помощью борной кислоты. Вестник Воронежского государственного университета инженерных технологий. 2022;2(92):249–255. DOI: 10.20914/2310-12022022-2-249-255.
Review
For citations:
Klyshnikov K.Yu., Kostyunin A.E., Onishchenko P.S., Glushkova T.V., Akentyeva T.N., Borisova N.N., Kutikhin A.G., Ovcharenko E.A. Hydrodynamic performance of a composite heart valve prosthesis. Bulletin of Siberian Medicine. 2025;24(3):52-58. (In Russ.) https://doi.org/10.20538/1682-0363-2025-3-52-58









































