Preview

Bulletin of Siberian Medicine

Advanced search

Neurocognitive deficits in schizophrenia and polymorphic variants of protein kinase signaling pathway genes: search for associations

https://doi.org/10.20538/1682-0363-2025-4-40-48

Abstract

Aim. To study the associations of polymorphic variants in the BDNF, GSK3B, AKT1, MAPK, and CREB1 genes with neurocognitive deficits (NCD) in patients with schizophrenia.

Materials and methods. The study included 148 patients with schizophrenia, who underwent psychometric examination and genotyping. The Brief Assessment of Cognition in Schizophrenia (BACS) was used to assess neurocognitive functioning indicators. Ten polymorphic variants in the genes BDNF, GSK3B, AKT1, MAPK, and CREB1 were genotyped. Statistical processing was carried out using the χ2 goodness-of-fit test, Fisher’s exact test, cluster analysis, the Kruskal-Wallis test, and multivariate analysis of variance.

Results. The CT genotype of the BDNF rs6265 polymorphic variant was more common in the group of patients with severe NCD, while the CC genotype was more typical for patients with moderate and mild NCD. In patients with severe and moderate NCD, the AG MAPK rs8136867 genotype was predominant, while in patients with mild NCD, the GG genotype was predominant. A statistically significant effect of polymorphic variants of the BDNF gene on performance in the Token motor task (rs6265: p = 0.025 and rs11030104: p = 0.027) and the Tower of London subtests (rs6265: p = 0.016 and rs11030104: p = 0.037) was found. There was also a significant effect of MAPK gene polymorphisms on the performance in the Token motor task subtest (rs8136867: p = 0.003) and CREB1 on the Tower of London test (rs6740584: p = 0.022).

Conclusion. For the first time, associations of BDNF rs6265 and MAPK rs8136867 polymorphisms with neurocognitive deficit in patients with schizophrenia, as well as BDNF rs6265, BDNF rs11030104, MAPK rs8136867, and CREB1 rs6740584 polymorphisms with performance in the BACS battery subtests were found.

About the Authors

A. N. Kornetov
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

4 Aleutskaya St., 634014 Tomsk



V. V. Tiguntsev
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

4 Aleutskaya St., 634014 Tomsk



S. A. Galkin
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

4 Aleutskaya St., 634014 Tomsk



E. V. Mikhalitskaya
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

4 Aleutskaya St., 634014 Tomsk



A. A. Agarkov
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

4 Aleutskaya St., 634014 Tomsk



A. S. Boyko
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

4 Aleutskaya St., 634014 Tomsk



E. G. Kornetova
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

4 Aleutskaya St., 634014 Tomsk



S. A. Ivanova
Mental Health Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

4 Aleutskaya St., 634014 Tomsk



References

1. Javitt D.C. Cognitive impairment associated with schizophrenia: from pathophysiology to treatment. Annu. Rev. Pharmacol. Toxicol. 2023;63:119–141. DOI: 10.1146/annurev-pharmtox-051921-093250.

2. World Health Organization. International statistical classification of diseases and related health problems (11th ed.) https://icd.who.int/. Accessed 10 Apr. 2025.

3. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed., text rev.). Washington DC: American Psychiatric Publishing Incorporated, 2022. DOI: 10.1176/appi.books.9780890425787.

4. Rangel A., Muñoz C., Ocampo M.V., Quintero C., Escobar M., Botero S. et al. Neurocognitive subtypes of schizophrenia. Actas Esp. Psiquiatr. 2015;43(3):80–90.

5. Javitt D.C., Zukin S.R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry. 1991;148(10):1301– 1318. DOI: 10.1176/ajp.148.10.1301.

6. Garrido R., Springer J.E., Hennig B., Toborek M. Apoptosis of spinal cord neurons by preventing depletion nicotine attenuates arachidonic acid-induced of neurotrophic factors. J. Neurotrauma. 2003;20(11):1201–12113. DOI: 10.1089/089771503322584628.

7. Woo E., Sansing L.H., Arnsten A.F.T., Datta D. Chronic stress weakens connectivity in the prefrontal cortex: architectural and molecular changes. Chronic Stress (Thousand Oaks). 2021;5:24705470211029254. DOI: 10.1177/24705470211029254.

8. Михалицкая Е.В., Левчук Л.А. Нейропластичность мозга: мозговой нейротрофический фактор и протеинкиназные сигнальные пути (обзор литературы). Сибирский вестник психиатрии и наркологии. 2022;3(116):44–53. DOI: 10.26617/1810-3111-2022-3(116)-44-53.

9. Barfield E.T., Gourley S.L. Prefrontal cortical trkB, glucocorticoids, and their interactions in stress and developmental contexts. Neurosci. Biobehav. Rev. 2018;95:535–558. DOI: 10.1016/j.neubiorev.

10. Losenkov I.S., Ivanova S.A., Vyalova N.M., Simutkin G.G., Bokhan N.A. The content of the AKT1/GSK-3 signal pathway proteins in peripheral blood mononuclear cells in patients with affective disorders. Neurochemical Journal. 2014;8(3):208– 213. DOI: 10.1134/S1819712414030106 .

11. Fei E., Chen P., Zhang Q., Zhong Y., Zhou T. Protein kinase B/Akt1 phosphorylates dysbindin-1A at serine 10 to regulate neuronal development. Neuroscience. 2022;490:66–78. DOI: 10.1016/j.neuroscience.2022.01.025.

12. Calati R., Salvina Signorelli M., Balestri M., Marsano A., De Ronchi D., Aguglia E., Serretti A. Antidepressants in elderly: metaregression of double-blind, randomized clinical trials. J. Affect. Disord. 2013;147(1-3):1–8. DOI: 10.1016/j.jad.2012.11.053.

13. Hettema J.E., Hendricks P.S. Motivational interviewing for smoking cessation: a meta-analytic review. J. Consult. Clin. Psychol. 2010;78(6):868–884. DOI: 10.1037/a0021498.

14. Farsi Z., Sheng M. Molecular mechanisms of schizophrenia: Insights from human genetics. Curr. Opin. Neurobiol. 2023;81:102731. DOI: 10.1016/j.conb.2023.102731.

15. Owen M.J., Legge S.E., Rees E., Walters J.T.R., O’Donovan M.C. Genomic findings in schizophrenia and their implications. Mol. Psychiatry. 2023;28(9):3638–3647. DOI: 10.1038/s41380-023-02293-8.

16. Singh S., Roy D., Marzouk T., Zhang J.P. Peripheral Blood Levels of Brain-Derived Neurotrophic Factor in Patients with First Episode Psychosis: A Systematic Review and Meta-Analysis. Brain Sci. 2022;12(4):414. DOI: 10.3390/brainsci12040414.

17. Mamtani H., Pathak H., Sakhardande K.A., Gowda G.S., Muliyala K.P., Moirangthem S. et al. Can peripheral brain-derived neurotrophic factor (BDNF) be a potential biomarker of suicide risk in schizophrenia? Schizophr. Res. 2022;243:203– 205. DOI: 10.1016/j.schres.2022.03.010.

18. Nieto R.R., Carrasco A., Corral S., Castillo R., Gaspar P.A., Bustamante M.L., Silva H. BDNF as a Biomarker of Cognition in Schizophrenia/Psychosis: An Updated Review. Front. Psychiatry. 2021;12:662407. DOI: 10.3389/fpsyt.2021.662407.

19. Корнетова Е.Г., Гончарова А.А., Корнетов А.Н., Давыдов А.А., Дубровская В.В., Семке А.В. и др. Связь суицидального поведения и безнадежности с акатизией у больных шизофренией. Суицидология. 2018;3(32):63–70. DOI: 10.32878/suiciderus.18-09-03(32)-63-70.

20. Kay S.R., Fiszbein A., Opler L.A. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr. Bull. 1987;13(2):261–276.

21. Мосолов С.Н. Шкалы психометрической оценки симптоматики шизофрении и концепция позитивных и негативных расстройств. М.: Новый цвет, 2001:238.

22. Саркисян Г.Р., Гурович И.Я., Киф Р.С. Нормативные данные для российской популяции и стандартизация шкалы «Краткая оценка когнитивных функций у пациентов с шизофренией». Социальная и клиническая психиатрия. 2010;20(3):13–19.

23. Корнетов А.Н., Языков К.Г., Корнетова Е.Г. Федоренко О.Ю., Гончарова А.А., Семке А.В. и др. Нормативная оценка когнитивных функций по шкале «Краткая оценка когнитивных функций у пациентов с шизофренией» (BACS) в Томской популяции: конституциональные факторы вариативности. Сибирский психологический журнал. 2021;82:137–152. DOI: 10.17223/17267080/82/8.

24. Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–269. DOI: 10.1016/s0092-8674(03)00035-7.

25. Hariri A.R., Goldberg T.E., Mattay V.S., Kolachana B.S., Callicott J.H., Egan M.F., Weinberger D.R. Brain derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci. 2003;23:6690–6694. DOI: 10.1523/JNEUROSCI.23-17-06690.2003.

26. Dempster E., Toulopoulou T., McDonald C., Bramon E., Walshe M., Filbey F. et al. Association between BDNF val66met genotype and episodic memory. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005;134B(1):73–75. DOI: 10.1002/ajmg.b.30150.

27. Goldberg T.E., Iudicello J., Russo C., Elvevåg B., Straub R., Egan M.F., Weinberger D.R. BDNF Val66Met polymorphism significantly affects d’ in verbal recognition memory at short and long delays. Biol. Psychol. 2008;77(1):20–24. DOI: 10.1016/j.biopsycho.2007.08.009.

28. Huang R., Huang J., Cathcart H., Smith S., Poduslo S.E. Genetic variants in brain-derived neurotrophic factor associated with Alzheimer’s disease. J. Med .Genet. 2007;44(2): e66. DOI: 10.1136/jmg.2006.044883.

29. Windham I.A., Cohen S. The cell biology of APOE in the brain. Trends Cell Biol. 2024;34(4):338–348. DOI: 10.1016/j.tcb.2023.09.004.

30. Aureli A., Del Beato T., Sebastiani P., Marimpietri A., Melillo C.V., Sechi E., Di Loreto S. Attention-deficit hyperactivity disorder and intellectual disability: a study of association with brain-derived neurotrophic factor gene polymorphisms. Int. J. Immunopathol. Pharmacol. 2010;23(3):873–880. DOI: 10.1177/039463201002300323.

31. Mostert J.P., Koch M.W., Heerings M., Heersema D.J., De Keyser J. Therapeutic potential of fluoxetine in neurological disorders. CNS Neurosci. Ther. 2008;14:153–164.

32. Drechsler R., Brem S., Brandeis D., Grünblatt E., Berger G., Walitza S. ADHD: Current concepts and treatments in children and adolescents. Neuropediatrics. 2020;51(5):315–335. DOI: 10.1055/s-0040-1701658.

33. Schimmelmann S.G., Friedel S., Dempfle A., Warnke A., Lesch K.P., Walitza S. et al. No evidence for preferential transmission of common valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor gene (BDNF) in ADHD. J. Neural. Transm. 2007;114:523–526. DOI: 10.1007/s00702-006-0616-1.

34. Xu X., Mill J., Zhou K., Brookes K., Chen C.K., Asherson P. Family-based association study between brain-derived neurotrophic factor gene polymorphisms and attention deficit hyperactivity disorder in UK and Taiwanese samples. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007;144B:83–86.

35. Lee J., Laurin N., Crosbie J., Ickowicz A., Pathare T., Malone M. et al. Association study of the brain-derived neurotropic factor (BDNF) gene in attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007;144B(8):976–981. DOI: 10.1002/ajmg.b.30437.

36. Sanchez-Mora C., Ribases M., Ramos-Quiroga J.A., Casas M., Bosch R., Boreatti-Hümmer A. et al. Meta-analysis of brain-derived neurotrophic factor p.Val66Met in adult ADHD in four European populations. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010;153B: 512–523.

37. Calabrò M., Mandelli L., Crisafulli C., Sidoti A., Jun T.Y., Lee S.J., et al. Genes involved in neurodevelopment, neuroplasticity, and bipolar disorder: CACNA1C, CHRNA1, and MAPK1. Neuropsychobiology. 2016;74(3):159–168. DOI: 10.1159/000468543.

38. Calati R., Crisafulli C., Balestri M., Serretti A., Spina E., Calabrò M. et al. Evaluation of the role of MAPK1 and CREB1 polymorphisms on treatment resistance, response and remission in mood disorder patients. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013;44:271–278. DOI: 10.1016/j.pnpbp.2013.03.005.

39. Nestler E.J., Barrot M., DiLeone R.J., Eisch A.J., Gold S.J., Monteggia L.M. Neurobiology of depression. Neuron. 2002;34:13–25.

40. Mercier G., Lennon A.M., Renouf B., Dessouroux A., Ramauge M., Courtin F. et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J. Mol. Neurosci. 2004;24:207–216.

41. Fumagalli F., Molteni R., Calabrese F., Frasca A., Racagni G., Riva M.A. Chronic fluoxetine administration inhibits extracellular signal-regulated kinase 1/2 phosphorylation in rat brain. J. Neurochem. 2005;93:1551–1560.

42. Qi X., Lin W., Li J., Li H., Wang W., Wang D. et al. Fluoxetine increases the activity of the ERK–CREB signal system and alleviates the depressive-like behavior in rats exposed to chronic forced swim stress. Neurobiol. Dis. 2008;31: 278–285.

43. Lin T.Y., Yang T.T., Lu C.W., Wang S.J. Inhibition of glutamate release by bupropion in rat cerebral cortex nerve terminals. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2011;35(2):598–606. DOI: 10.1016/j.pnpbp.2010.12.029.

44. Batinic B., Ristic I., Zugic M., Baldwin D.S. Treatment of Symptom clusters in schizophrenia, bipolar disorder and major depressive disorder with the dopamine D3/D2 preferring partial agonist cariprazine. Front. Psychiatry. 2021;12:784370. DOI: 10.3389/fpsyt.2021.784370.

45. Casey A.B., Cui M., Booth R.G., Canal C.E. «Selective» serotonin 5-HT2A receptor antagonists. Biochem. Pharmacol. 2022;200:115028. DOI: 10.1016/j.bcp.2022.115028.

46. Price R.B., Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol. Psychiatry. 2020;25(3):530–543. DOI: 10.1038/s41380-019-0615-x.


Review

For citations:


Kornetov A.N., Tiguntsev V.V., Galkin S.A., Mikhalitskaya E.V., Agarkov A.A., Boyko A.S., Kornetova E.G., Ivanova S.A. Neurocognitive deficits in schizophrenia and polymorphic variants of protein kinase signaling pathway genes: search for associations. Bulletin of Siberian Medicine. 2025;24(4):40-48. (In Russ.) https://doi.org/10.20538/1682-0363-2025-4-40-48

Views: 79

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)