Effect of Idelalisib on cytokine production by blood mononuclear cells in patients with allergic rhinitis
https://doi.org/10.20538/1682-0363-2025-4-59-67
Abstract
Aim. To assess the ability of phosphatidylinositol 3-kinase δ inhibitor (idelalisib) to suppress cytokine production by peripheral blood mononuclear cells (PBMCs) of patients with allergic rhinitis.
Materials and methods. PBMCs of AR patients (n = 17) were incubated with idelalisib (0.5 μM) and recombinant proteins for induction of type 2 immune response (IR). Secretion of cytokines by PBMCs was determined by enzyme-linked immunosorbent assay. Intracellular production of cytokines in blood T-helper cells (CD4+) and cytotoxic (CD8+) T-lymphocytes was analyzed by flow cytometry.
Results. Idelalisib significantly inhibited the secretion of interleukins (IL) 4, 8, 9, 13, 17A, interferon γ, and tumor necrosis factor α by PBMCs from patients with allergic rhinitis exposed to recombinant proteins (IL-2, IL-25, IL33, and thymic stromal lymphopoietin) inducing type 2 IR. This drug also significantly suppressed the intracellular production of IL-4, IL-5, IL-13, and IL-17A by blood CD4+ and CD8+ T lymphocytes activated by type 2 IR.
Conclusion. The obtained data justify the need to conduct further clinical trials using idelalisib for the treatment of allergic rhinitis.
Keywords
About the Authors
V. V. MakarevichBelarus
83 Dzerzhinsky Ave., 220083 Minsk
A. G. Kadushkin
Belarus
83 Dzerzhinsky Ave., 220083 Minsk
A. D. Tahanovich
Belarus
83 Dzerzhinsky Ave., 220083 Minsk
T. V. Mironova
Belarus
83 Dzerzhinsky Ave., 220083 Minsk
T. S. Kolesnikova
Belarus
83 Dzerzhinsky Ave., 220083 Minsk
E. M. Nazarenko
Belarus
83 Dzerzhinsky Ave., 220083 Minsk
O. V. Levandovskaya
Belarus
8 Semashko Str., 220087 Minsk
I. P. Shilovskiy
Russian Federation
24 Kashirskoe High Rd., 115522 Moscow
M. R. Khaitov
Russian Federation
24 Kashirskoe High Rd., 115522 Moscow,
1 Ostrovityanov Str., 117513 Moscow
O. V. Dziadzichkina
Belarus
83 Dzerzhinsky Ave., 220083 Minsk
References
1. Tidke M., Borghare P.T., Pardhekar P., Nasre Y., Gomase K., Chaudhary M. Recent Advances in Allergic Rhinitis: A Narrative Review. Cureus. 2024;16(9):e68607. DOI: 10.7759/cureus.68607.
2. Scheire S., Germonpré S., Mehuys E., Van Tongelen I., De Sutter A., Steurbaut S. et al. Rhinitis Control and Medication Use in a Real-World Sample of Patients With Persistent Rhinitis or Rhinosinusitis: A Community Pharmacy Study. J. Allergy Clin. Immunol. Pract. 2024;12(7):1865–1876.e6. DOI: 10.1016/j.jaip.2024.04.031.
3. Шиловский И.П., Тимотиевич Е.Д., Каганова М.М., Пасихов Г.Б., Таганович А.Д., Кадушкин А.Г. и др. Роль триады цитокинов, продуцируемых респираторным эпителием, в патогенезе аллергического ринита. Иммунология. 2024;45(2):245–255. DOI: 10.33029/1816-2134-2024-45-2-245-255.
4. Horak F., Puri K.D., Steiner B.H., Holes L., Xing G., Zieglmayer P. et al. Randomized phase 1 study of the phosphatidylinositol 3-kinase δ inhibitor idelalisib in patients with allergic rhinitis. J. Allergy Clin. Immunol. 2016;137(6):1733–1741. DOI: 10.1016/j.jaci.2015.12.1313.
5. Kämpe M., Lampinen M., Stolt I., Janson C., Stålenheim G., Carlson M. PI3-kinase regulates eosinophil and neutrophil degranulation in patients with allergic rhinitis and allergic asthma irrespective of allergen challenge model. Inflammation. 2012;35(1):230–239. DOI: 10.1007/s10753-011-9309-5.
6. Saw S., Arora N. PI3K and ERK1/2 kinase inhibition potentiate protease inhibitor to attenuate allergen induced Th2 immune response in mouse. Eur. J. Pharmacol. 2016;776:176– 184. DOI: 10.1016/j.ejphar.2016.02.050.
7. Palma G., Pasqua T., Silvestri G., Rocca C., Gualtieri P., Barbieri A. et al. PI3Kδ inhibition as a potential therapeutic target in COVID-19. Front. Immunol. 2020;11:2094. DOI: 10.3389/fimmu.2020.02094.
8. Hawkins P.T., Stephens L.R. PI3K signalling in inflammation. Biochim. Biophys. Acta. 2015;1851(6):882–897. DOI: 10.1016/j.bbalip.2014.12.006.
9. Southworth T., Mason S., Bell A., Ramis I., Calbet M., Domenech A. et al. PI3K, p38 and JAK/STAT signalling in bronchial tissue from patients with asthma following allergen challenge. Biomark. Res. 2018;6:14. DOI: 10.1186/s40364-018-0128-9.
10. Макаревич В.В., Таганович А.Д., Миронова Т.В., Шиловский И.П., Хаитов М.Р., Кадушкин А.Г. Роль эпителиальных аларминов и Th2-цитокинов в развитии воспалительной реакции при аллергическом рините. Сибирский научный медицинский журнал. 2024;44(5):35–45. DOI: 10.18699/SSMJ20240504.
11. Sheha D., El-Korashi L., AbdAllah A.M., El Begermy M.M., Elzoghby D.M., Elmahdi A. Lipid profile and IL-17A in allergic rhinitis: correlation with disease severity and quality of life. J. Asthma Allergy. 2021;14:109–117. DOI: 10.2147/JAA.S290813.
12. Henrot P., Prevel R., Berger P., Dupin I. Chemokines in COPD: from implication to therapeutic use. Int. J. Mol. Sci. 2019;20(11):2785. DOI: 10.3390/ijms20112785.
13. Wang Y.H., Liu Y.J. The IL-17 cytokine family and their role in allergic inflammation. Curr. Opin. Immunol. 2008;20(6):697– 702. DOI: 10.1016/j.coi.2008.09.004.
14. Cergan R., Berghi O., Dumitru M., Vrinceanu D., Manole F., Musat G.C. et al. Interleukin 8 Molecular Interplay in Allergic Rhinitis and Chronic Rhinosinusitis with Nasal Polyps: A Scoping Review. Life. 2025;15(3):469. DOI: 10.3390/life15030469.
15. Fahmy Y.A., El-Korashi L.A., Attia H.M., Attia O., Behiry A.S., El-Sayed H.A. IL-22, TNF-α, IL-17, and IL-8 in allergic rhinitis and correlation with disease severity. Egyptian Journal of Medical Microbiology. 2025;34(1):119–130. DOI: 10.21608/EJMM.2024.326786.1354.
16. Baumann R., Rabaszowski M., Stenin I., Tilgner L., Scheckenbach K., Wiltfang J. et al. Comparison of the nasal release of IL-4, IL-10, IL-17, CCL13/MCP-4, and CCL26/eotaxin-3 in allergic rhinitis during season and after allergen challenge. Am. J. Rhinol. Allergy. 2013;27(4):266–272. DOI: 10.2500/ajra.2013.27.3913.
17. Gosset P., Tillie-Leblond I., Malaquin F., Durieu J., Wallaert B., Tonnel A.B. Interleukin-8 secretion in patients with allergic rhinitis after an allergen challenge: interleukin-8 is not the main chemotactic factor present in nasal lavages. Clin. Exp. Allergy. 1997;27(4):379–388. DOI: 10.1111/j.1365-2222.1997.tb00722.x.
18. Iwasaki M., Saito K., Takemura M., Sekikawa K., Fujii H., Yamada Y. et al. TNF-alpha contributes to the development of allergic rhinitis in mice. J. Allergy Clin. Immunol. 2003;112(1):134–140. DOI: 10.1067/mai.2003.1554.
19. Cui Q., Li J., Wang J. The assessment of TNF-α gene polymorphism association with the risk of allergic rhinitis in the Chinese Han Population. Int. J. Gen. Med. 2021;14:5183– 5192. DOI: 10.2147/IJGM.S325969.
20. Mo J.H., Kang E.K., Quan S.H., Rhee C.S., Lee C.H., Kim D.Y. Anti-tumor necrosis factor-alpha treatment reduces allergic responses in an allergic rhinitis mouse model. Allergy. 2011;66(2):279–286. DOI: 10.1111/j.1398-9995.2010.02476.x.
21. Wang H., Barrenäs F., Bruhn S., Mobini R., Benson M. Increased IFN-gamma activity in seasonal allergic rhinitis is decreased by corticosteroid treatment. J. Allergy Clin. Immunol. 2009;124(6):1360–1362. DOI: 10.1016/j.jaci.2009.09.037.
22. Mazzi V., Fallahi P. Allergic rhinitis and CXCR3 chemokines. Clin. Ter. 2017;168(1):e54-e58. DOI: 10.7417/CT.2017.1983.
Review
For citations:
Makarevich V.V., Kadushkin A.G., Tahanovich A.D., Mironova T.V., Kolesnikova T.S., Nazarenko E.M., Levandovskaya O.V., Shilovskiy I.P., Khaitov M.R., Dziadzichkina O.V. Effect of Idelalisib on cytokine production by blood mononuclear cells in patients with allergic rhinitis. Bulletin of Siberian Medicine. 2025;24(4):59-67. (In Russ.) https://doi.org/10.20538/1682-0363-2025-4-59-67
JATS XML









































