Preview

Бюллетень сибирской медицины

Расширенный поиск

Нейротрофический фактор мозга: значение в физиологии и патологии сердечно-сосудистой системы

https://doi.org/10.20538/1682-0363-2025-4-153-163

Аннотация

В лекции проведен анализ литературных данных о роли нейротрофического фактора мозга (BDNF) в развитии и функционировании сердечно-сосудистой системы и его участии в патогенезе сердца и сосудов. Информация структурирована в соответствии с многофункциональными свойствами и эффектами BDNF, позволяющими рассматривать нейротрофический фактор мозга в качестве терапевтической мишени для ослабления миокардиальной дисфункции и восстановления деятельности сердца при ишемии/реперфузии.

Приведены данные о способности нейрокина оказывать кардиопротекторное действие посредством активации ангиогенеза и неоваскуляризации ишемизированной ткани миокарда путем повышения жизнеспособности эндотелиоцитов. Известно, что вегетативный тонус является важнейшим показателем состояния сердечно-сосудистой системы. Вопрос о характере влияния нейротрофического фактора мозга на активность симпатических и парасимпатических нейронов остается открытым. Однако в настоящее время преобладает мнение о том, что BDNF регулирует частоту сердечных сокращений, усиливая парасимпатическую активность стволовых структур головного мозга. На основании экспериментальных и клинических сведений рассматриваются перспективы применения аналогов нейрокина в кардиологической практике.

Об авторах

Т. В. Ласукова
Сибирский государственный медицинский университет (СибГМУ)
Россия

Ласукова Татьяна Викторовна – д-р биол. наук, профессор, профессор кафедры нормальной физиологии

634050, г. Томск, Московский тракт, 2



Д. В. Загулова
Сибирский государственный медицинский университет (СибГМУ)
Россия

Загулова Диана В. – д-р мед. наук, зав. лабораторией экспериментальной физиологии, профессор кафедры нормальной физиологии

634050, г. Томск, Московский тракт, 2



Ю. В. Колобовникова
Сибирский государственный медицинский университет (СибГМУ)
Россия

Колобовникова Юлия Владимировна – д-р мед. наук, доцент, зав. кафедрой нормальной физиологии, декан медико-биологического факультета

634050, г. Томск, Московский тракт, 2



А. В. Носарев
Сибирский государственный медицинский университет (СибГМУ)
Россия

Носарев Алексей Валерьевич – д-р мед. наук, доцент, профессор кафедры биофизики и функциональной диагностики, профессор кафедры нормальной физиологии

634050, г. Томск, Московский тракт, 2



Э. В. Мартюшева
Сибирский государственный медицинский университет (СибГМУ)
Россия

Мартюшева Эрна Владимировна – аспирант, кафедра нормальной физиологии

634050, г. Томск, Московский тракт, 2



И. В. Петрова
Сибирский государственный медицинский университет (СибГМУ)
Россия

Петрова Ирина Викторовна – д-р биол. наук, профессор, профессор кафедры биофизики и функциональной диагностики

634050, г. Томск, Московский тракт, 2



Е. А. Степовая
Сибирский государственный медицинский университет (СибГМУ)
Россия

Степовая Елена Алексеевна – д-р мед. наук, профессор кафедры биохимии и молекулярной биологии с курсом клинической лабораторной диагностики

634050, г. Томск, Московский тракт, 2



О. Е. Акбашева
Сибирский государственный медицинский университет (СибГМУ)
Россия

Акбашева Ольга Евгеньевна – д-р мед. наук, профессор кафедра биохимии и молекулярной биологии с курсом клинической лабораторной диагностики

634050, г. Томск, Московский тракт, 2



Список литературы

1. Kermani P., Hempstead B. Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc. Med. 2007;(4):140–143. DOI: 10.1016/j.tcm.2007.03.002.

2. Taşçı İ., Kabul H.K., Aydoğdu A. Brain derived neurotrophic factor (BDNF) in cardiometabolic physiology and diseases. Anadolu Kardiyol. Derg. 2012;12(8):684–688. DOI: 10.5152/akd.2012.221.

3. Niitsu T., Oda Y., Idemoto K., Ota K., Liu J., Sasaki T. et al. Association between serum levels of glial cell line-derived neurotrophic factor and inattention in adult patients with attention deficits/hyperactivity disorder. Psychiatry Res. 2021; 296:113674. DOI: 10.1016/j.psychres.2020.113674.

4. Heermann S., Mätlik K., Hinz U., Fey J., Arumae U., Krieglstein K. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors. J. Neurosci. Res. 2013;91(6):780–785. DOI: 10.1002/jnr.2318.

5. Xie Y., Zhao W., Zuo Z. Glial cell-derived neurotrophic factor decrease may mediate learning, memory and behavior impairments in rats after neonatal surgery. Brain Res. Bull. 2022;178:9–16. DOI:10.1016/j.brainresbull.2021.10.020.

6. Pius-Sadowska E., Machaliński B. BDNF – A key player in cardiovascular system. J. Molecular and Cellular Cardiology. 2017;110:54–60. DOI: 10.1016/j.yjmcc.2017.07.007.

7. Black E.A.E., Smith P.M., McIsaac W., Ferguson A.V. Brain-derived neurotrophic factor acts at neurons of the subfornical organ to influence cardiovascular function. Physiol. Rep. 2018;6(10):e13704. DOI: 10.14814/phy2.13704.

8. Caporali A., Emanueli C. Cardiovascular actions of neurotrophins. Physiol. Rev. 2009;89(1):279–308. DOI: 10.1152/physrev.00007.2008.

9. Ieda M., Fukuda K., Hisaka Y., Kimura K., Kawaguchi H., Fujita J. et al. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression. J. Clin. Invest. 2004;113(6):876–884. DOI: 10.1172/JCI19480.

10. Ieda M., Kanazawa H., Ieda Y., Kimura K., Matsumura K., Tomita Y. et al. Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts. Circulation. 2006;114(22):2351–2363. DOI: 10.1161/CIRCULATIONAHA.106.627588.

11. Clark C.G., Hasser E.M., Kunze D.L., Katz D.M., Kline D.D. Endogenous brain-derived neurotrophic factor in the nucleus tractus solitarius tonically regulates synaptic and autonomic function. J. Neurosci. 2011;31(34):12318–12329. DOI: 10.1523/JNEUROSCI.0746-11.2011.

12. Zhang L., Fang Y., Lian Y., Chen Y., Wu T., Zheng Y. et al. Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer’s disease induced by aβ1- 42. PLoS One. 2015;10(4):e0122415. DOI: 10.1371/journal.pone.0122415.

13. Mias C., Coatrieux C., Denis C., Genet G., Seguelas M.H., Laplace N. et al. Cardiac fibroblasts regulate sympathetic nerve sprouting and neurocardiac synapse stability. PLoS One. 2013;(11):e79068. DOI: 10.1371/journal.pone.0079068.

14. Wan R., Weigand L.A., Bateman R., Griffioen K., Mendelowitz D., Mattson M.P. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability. J. Neurochem. 2014;(4):573–580. DOI: 10.1111/jnc.12656.

15. Fioranelli M., Garo M.L., Roccia M.G., Prizbelek B., Sconci F.R. Brain-Heart Axis: Brain-Derived Neurotrophic Factor and Cardiovascular Disease-A Review of Systematic Reviews. Life (Basel). 2023;13(12):2252. DOI: 10.3390/life13122252.

16. Samal R., Ameling S., Dhople V., Sappa P.K., Wenzel K., Völker U. et al. Brain derived neurotrophic factor contributes to the cardiogenic potential of adult resident progenitor cells in failing murine heart. PLoS One. 2015;10(3):e0120360. DOI: 10.1371/journal.pone.0120360.

17. Fulgenzi G., Tomassoni-Ardori F.L., Babini J., Becker C., Barrick S. et al. BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB.T1 receptor activation. J. Cell. Biol. 2015;210(6):1003–1012.

18. Anastasia K., Deinhardt S., Wang L., Martin D., Nichol K. Trkb signaling in pericytes is required for cardiac microvessel stabilization. PLoS One. 2014;9(1):e87406.

19. Hong J.H., Park H.M., Byun K.H., Lee B.H., Kang W.C., Jeong G.B. BDNF expression of macrophages and angiogenesis after myocardial infarction. Int. J. Cardiol. 2014;176(3):1405–1408. DOI: 10.1016/j.ijcard.2014.08.019.

20. Jiang H., Huang S., Li X., Li X., Zhang Y., Chen Z.Y. Tyrosine kinase receptor B protects against coronary artery disease and promotes adult vasculature integrity by regulating Ets1-mediated VE-cadherin expression. Arterioscler. Thromb. Vasc. Biol. 2015;(3):580–588. DOI: 10.1161/ATVBAHA.114.304405.

21. Halade G.V., Ma Y., Ramirez T.A., Zhang J., Dai Q., Hensler J.G. et al. Reduced BDNF attenuates inflammation and angiogenesis to improve survival and cardiac function following myocardial infarction in mice. Am J. Physiol. Heart Circ. Physiol. 2013;305(12):H1830–842. DOI: 10.1152/ajpheart.00224.2013

22. Okada S., Yokoyama M., Toko H., Tateno K., Moriya J., Shimizu I. et al. Brain-derived neurotrophic factor protects against cardiac dysfunction after myocardial infarction via a central nervous system-mediated pathway. Arterioscler. Thromb. Vasc. Biol. 2012;32(8):1902–1909. DOI: 10.1161/ATVBAHA.112.248930.

23. Feng N., Huke S., Zhu G., Tocchetti C.G., Shi S., Aiba T. et al. Constitutive BDNF/TrkB signaling is required for normal cardiac contraction and relaxation. Proc. Natl. Acad. Sci. USA. 2015;112(6):1880–1885. DOI: 10.1073/pnas.1417949112.

24. Li L., Guo H., Lai B., Liang C., Chen H., Chen Y. et al. Ablation of cardiomyocyte-derived BDNF during development causes myocardial degeneration and heart failure in the adult mouse heart. Front. Cardiovasc. Med. 2022;9:967463. DOI: 10.3389/fcvm.2022.967463.

25. Hildreth V., Anderson R.H., Henderson D.J. Autonomic innervation of the developing heart: origins and function. Clin. Anat. 2009;22(1):36–46.

26. Jahed A., Kawaja M.D. The influences of p75 neurotrophin receptor and brainderived neurotrophic factor in the sympathetic innervation of target tissues during murine postnatal development. Auton. Neurosci. 2005;118(1-2):32–42.

27. Cefis M., Quirié A., Pernet N., Marie C., Garnier P., Prigent-Tessier A. Brain-derived neurotrophic factor is a full endothelium-derived factor in rats. Vascul. Pharmacol. 2020;128–129:106674. DOI: 10.1016/j.vph.2020.106674.

28. Wang B.L., Jin H., Han X.Q., Xia Y., Liu N.F. Involvement of brain-derived neurotrophic factor in exerciseinduced cardioprotection of post-myocardial infarction rats. Int. J. Mol. Med. 2018;42(5):2867–2880. DOI: 10.3892/ijmm.2018.3841.

29. Thorsdottir D., Cruickshank N.C., Einwag Z., Hennig G.W., Erdos B. BDNF downregulates β-adrenergic receptor-mediated hypotensive mechanisms in the paraventricular nucleus of the hypothalamus. Am. J. Physiol. Heart. Circ. Physiol. 2019;317(6):H1258–H1271. DOI: 10.1152/ajpheart.00478.2019.

30. Lei M., Liu Q., Nie J., Huang R., Mei Y., Pan D. et al. Impact and mechanisms of action of BDNF on neurological disorders, cancer, and cardiovascular diseases. CNS Neurosci. Ther. 2024;30(12):e70138. DOI: 10.1111/cns.70138.

31. Soman K.S., Swain M., Dagda R.K. BDNF-TrkB signaling in mitochondria: implications for neurodegenerative diseases. Mol. Neurobiol. 2025;62(2):1756–1769. DOI: 10.1007/s12035-024-04357-4.

32. Hang P.Z., Zhu H., Li P.F., Liu J., Ge F.Q., Zhao J. et al. The emerging role of BDNF/TrkB signaling in cardiovascular diseases. Life (Basel). 2021;11(1):70. DOI: 10.3390/life11010070.

33. Pober J.S., Sessa W.C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 2007;(10):803–815. DOI: 10.1038/nri2171.

34. Ejiri J., Inoue N., Kobayashi S., Shiraki R., Otsui K., Honjo T. et al. Possible role of brain-derived neurotrophic factor in the pathogenesis of coronary artery disease. Circulation. 2005;112(14):2114–2020. DOI: 10.1161/CIRCULATIONAHA.104.476903

35. Hooten N.N., Ejiogu N., Zonderman A.B., Evans M.K. Protective Effects of BDNF against C-reactive protein-induced inflammation in women. Mediators Inflamm. 2015;(2015):516783. DOI: 10.1155/2015/516783.

36. Kaess B.M., Preis S.R., Lieb W., Beiser A.S., Yang Q., Chen T.C. et al. Circulating brain-derived neurotrophic factor concentrations and the risk of cardiovascular disease in the community. J. Am. Heart Assoc. 2015;4(3):e001544. DOI: 10.1161/JAHA.114.001544.

37. Lorgis L., Amoureux S., de Maistre E., Sicard P., Bejot Y., Zeller M. et al. Serum brain-derived neurotrophic factor and platelet activation evaluated by soluble P-selectin and soluble CD-40-ligand in patients with acute myocardial infarction. Fundam. Clin. Pharmacol. 2010;24(4):525–530. DOI: 10.1111/j.1472-8206.2009.00790.x

38. Sustar A., Perkovic M.N., Erjavec G.N., Strac D.S., Pivac N. Association between reduced brain-derived neurotrophic factor concentration & coronary heart disease. Indian J. Med. Res. 2019;150(1):43–49. DOI: 10.4103/ijmr.IJMR_1566_17.

39. Wu H.B., Shao K., Wang Y.C., Wang X.C., Liu H.L., Xie Y.T. et al. Research progress of CA125 and BDNF in serum of patients with acute myocardial infarction for predicting acute heart failure. Clin. Hemorheol. Microcirc. 2020;75(1):99– 106. DOI: 10.3233/CH-190738.

40. Williams M.S., Ngongang C.K., Ouyang P., Betoudji F., Harrer C., Wang N.Y. et al. Gender differences in platelet brain derived neurotrophic factor in patients with cardiovascular disease and depression. J. Psychiatr. Res. 2016;78:72–77. DOI: 10.1016/j.jpsychires.2016.03.013.

41. Kadowaki S., Shishido T., Honda Y., Narumi T., Otaki Y., Kinoshita D. et al. Additive clinical value of serum brain-derived neurotrophic factor for prediction of chronic heart failure outcome. Heart Vessels. 2016;31(4):535–544. DOI: 10.1007/s00380-015-0628-6.

42. Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Ischemia/reperfusion. Compr. Physiol. 2016;7(1):113–170. DOI: 10.1002/cphy.c160006.

43. Murphy E., Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 2008;88(2):581–609. DOI: 10.1152/physrev.00024.2007.

44. Zhao R., Wang X., Wang H., Yu T., Wang Q., Yang X. et al. Inhibition of long noncoding RNA BDNF-AS rescues cell death and apoptosis in hypoxia/reoxygenation damaged murine cardiomyocyte. Biochimie. 2017;138:43–49. DOI: 10.1016/j.biochi.2017.03.018.

45. Hang P., Zhao J., Cai B., Tian S., Huang W., Guo J. et al. Brain-derived neurotrophic factor regulates TRPC3/6 channels and protects against myocardial infarction in rodents. Int. J. Biol. Sci. 2015;11(5):536–545. DOI: 10.7150/ijbs.10754.

46. Hang P., Sun C., Guo J., Zhao J., Du Z. BDNF-mediates down-regulation of microRNA-195 inhibits ischemic cardiac apoptosis in rats. Int. J. Biol. Sci. 2016;12(8):979–989. DOI: 10.7150/ijbs.15071.

47. Lin B., Zhao H., Li L., Zhang Z., Jiang N., Yang X. et al. Sirt1 improves heart failure through modulating the NF-κB p65/microRNA-155/BNDF signaling cascade. Aging (Albany NY). 2020;13(10):14482–14498. DOI: 10.18632/aging.103640.

48. Kermani P., Rafii D., Jin D.K., Whitlock P., Schaffer W., Chiang A. Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J. Clin. Invest. 2005;115(3):653–663. DOI: 10.1172/JCI22655.

49. Nakamura K., Martin K.C., Jackson J.K., Beppu K., Woo C.W., Thiele C.J. Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res. 2006;66(8):4249–4255. DOI: 10.1158/0008-5472.CAN-05-2789.

50. Katare R.G., Kakinuma Y., Arikawa M., Yamasaki F., Sato T. Chronic intermittent fasting improves the survival following large myocardial ischemia by activation of BDNF/VEGF/PI3K signaling pathway. J. Mol. Cell. Cardiol. 2009;46(3):405–412. DOI: 10.1016/j.yjmcc.2008.10.027.

51. Coull J.A, Beggs S., Boudreau D., Boivin D., Tsuda M., Inoue K. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017–1021. DOI: 10.1038/nature04223.

52. Yang H., Feng G.D., Liang Z., Vitale A., Jiao X.Y., Ju G. et al. In vitro beneficial activation of microglial cells by mechanically-injured astrocytes enhances the synthesis and secretion of BDNF through p38MAPK. Neurochem. Int. 2012;61(2):175–186. DOI: 10.1016/j.neuint.2012.04.020.

53. Yang X., Zhang M., Xie B., Peng Z., Manning J.R., Zimmerman R. et al. Myocardial brain-derived neurotrophic factor regulates cardiac bioenergetics through the transcription factor Yin Yang 1. Cardiovasc. Res. 2023;119(2):571–586. DOI: 10.1093/cvr/cvac096.

54. Hang P.Z., Ge F.Q., Zhang M.R., Li Q.H., Yu H.Q., Song Y.C. et al. BDNF mimetic 7,8-dihydroxyflavone rescues rotenone-induced cytotoxicity in cardiomyocytes by ameliorating mitochondrial dysfunction. Free Radic. Biol. Med. 2023;198:83–91. DOI: 10.1016/j.freeradbiomed.2023.02.006.

55. Zhang M.R., Zuo B.Y., Song Y.C., Guo D.D., Li Q.L., Lyu J.X. et al. BDNF mimetics recover palmitic acid-induced injury in cardiomyocytes by ameliorating Akt-dependent mitochondrial impairments. Toxicol. Appl. Pharmacol. 2024;486:116951. DOI: 10.1016/j.taap.2024.116951.

56. Cannavo A., Jun S., Rengo G., Marzano F., Agrimi J., Liccardo D. et al. β3AR-dependent brain-derived neurotrophic factor (BDNF) generation limits chronic postischemic heart failure. Circ. Res. 2023;132(7):867–881. DOI: 10.1161/CIRCRESAHA.122.321583.

57. Rahman F., Himali J.J., Yin X., Beiser A.S., Ellinor P.T., Lubitz S.A. et al. Serum brain-deri ved neurotrophic factor and risk of atrial fibrillation. Am. Heart J. 2017;183:69–73. DOI: 10.1016/j.ahj.2016.07.027.

58. Fioranelli M., Spadafora L., Bernardi M., Roccia M.G., Del Buono M.G., Cacioli G. et al. Impact of low-dose Brain-Derived Neurotrophic Factor (BDNF) on atrial fibrillation recurrence. Minerva Cardiol. Angiol. 2023;71(6):673–680. DOI: 10.23736/S2724-5683.23.06324-X.

59. Arslan D., Ünal Çevik I. Interactions between the painful disorders and the autonomic nervous system. Agri. 2022;34(3):155–165. DOI: 10.14744/agri.2021.43078.

60. Wang H., Zhou X.F. Injection of brain-derived neurotrophic factor in the rostral ventrolateral medulla increases arterial blood pressure in anaesthetized rats. Neuroscience. 2002;112(4):967–975. DOI: 10.1016/s0306-4522(02)00085-4.

61. Kadoya M., Koyama H., Kanzaki A., Kurajoh M., Hatayama M., Shiraishi J. et al. Plasma brain-derived neurotrophic factor and reverse dipping pattern of nocturnal blood pressure in patients with cardiovascular risk factors. PLoS One. 2014;9(8):e105977. DOI: 10.1371/journal.pone.0105977.

62. Wu S.Y., Wang T.F., Yu L., Jen C.J., Chuang J.I., Wu F.S. et al. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav. Immun. 2011;25(1):135–146. DOI: 10.1016/j.bbi.2010.09.006.

63. Buchheit M., Chivot A., Parouty J., Mercier D., Al Haddad H., Laursen P.B. et al. Monitoring endurance running performance using cardiac parasympathetic function. Eur. J. Appl. Physiol. 2010;108(6):1153–1167. DOI: 10.1007/s00421-009-1317-x.

64. Hasan W. Autonomic cardiac innervation: development and adult plasticity. Organogenesis. 2013;9(3):176–193. DOI: 10.4161/org.24892.

65. Felder E., Dechant G. Neurotrophic factors acutely alter the sorting of the vesicular acetylcholine transporter and the vesicular monoamine transporter 2 in bimodal sympathetic neurons. Mol. Cell. Neurosci. 2007;34(1):1–9. DOI: 10.1016/j.mcn.2006.09.005.

66. Luther J.A., Birren S.J. Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton. Neurosci. 2009;151(1):46–60. DOI: 10.1016/j.autneu.2009.08.009.

67. Lima M.M., Nunes M.C., Nascimento B., Costa H.S., Sousa L.A., Teixeira A.L. et al. Improvement of the functional capacity is associated with BDNF and autonomic modulation in Chagas disease. Int. J. Cardiol. 2013;167(5):2363– 2366. DOI: 10.1016/j.ijcard.2012.11.055.

68. Dutt R., Shankar N., Srivastava S., Yadav A., Ahmed R.S. Cardiac autonomic tone, plasma BDNF levels and paroxetine response in newly diagnosed patients of generalised anxiety disorder. Int. J. Psychiatry Clin. Pract. 2020;24(2):135–142. DOI: 10.1080/13651501.2020.1723642.

69. Kreusser M.M., Buss S.J., Krebs J., Kinscherf R., Metz J., Katus H.A. et al. Differential expression of cardiac neurotrophic factors and sympathetic nerve ending abnormalities within the failing heart. J. Mol. Cell. Cardiol. 2008;44(2):380–387. DOI: 10.1016/j.yjmcc.2007.10.019.

70. Davies A.M. Extracellular signals regulating sympathetic neuron survival and target innervation during development. Auton. Neurosci. 2009;151(1):39–45. DOI: 10.1016/j.autneu.2009.07.011.

71. Montone R.A., Camilli M., Del Buono M.G., Russo M., Rinaldi R., Canonico F. et al. Brain-erived neurotrophic factor in patients with acute coronary syndrome. Trans Res. 2021; 231:39–54. DOI: 10.1016/j.trsl.2020.11.006.

72. Казаков С.Д., Королева Е.С., Бразовская Н.Г., Зайцев А.А., Иванова С.А., Алифирова В.М. Оценка уровня сывороточного BDNF при комплексной реабилитации пациентов с ишемическим инсультом с использованием традиционных подходов к восстановлению моторных функций. Бюллетень сибирской медицины. 2021;20(3):38–45. DOI: 10.20538/1682-0363-2021-3-38-45


Рецензия

Для цитирования:


Ласукова Т.В., Загулова Д.В., Колобовникова Ю.В., Носарев А.В., Мартюшева Э.В., Петрова И.В., Степовая Е.А., Акбашева О.Е. Нейротрофический фактор мозга: значение в физиологии и патологии сердечно-сосудистой системы. Бюллетень сибирской медицины. 2025;24(4):153-163. https://doi.org/10.20538/1682-0363-2025-4-153-163

For citation:


Lasukova T.V., Zagulova D.V., Kolobovnikova Yu.V., Nosarev А.V., Martyusheva E.V., Petrova I.V., Stepovaya E.A., Akbasheva O.E. Brain-derived neurotrophic factor: significance in the physiology and pathology of the cardiovascular system. Bulletin of Siberian Medicine. 2025;24(4):153-163. (In Russ.) https://doi.org/10.20538/1682-0363-2025-4-153-163

Просмотров: 73

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)