Preview

Bulletin of Siberian Medicine

Advanced search

Thyroid dysfunction as a key link in the concept of mutual aggravation of colorectal cancer and metabolic syndrome: review

https://doi.org/10.20538/1682-0363-2025-4-172-183

Abstract

The mutually aggravating role of endocrine glands and metabolic disorders in the process of carcinogenesis is well known, but it is underestimated in modern oncological practice. The study of the manifestations of thyroid dysfunction, its effect on carcinogenesis in patients with metabolic syndrome and the possibility of improvement should become an important direction in refining patient outcomes in colorectal cancer (CRC).

The aim of our review was to study the issue of thyroid dysfunction as a key link in the concept of colorectal carcinogenesis in metabolic syndrome. Current research data demonstrate a link between hypothyroidism and metabolic syndrome, suggesting that they mutually exacerbate each other, thereby worsening the condition of patients. Metabolic syndrome not only contributes to the development and progression of cancer, but also affects patient outcomes.

In clinical practice, an imbalance of thyroid hormones occurs in various types of cancer and is regarded as a confounding factor. Existing data regarding the influence of thyroid hormones on tumors are inconsistent. While hypothyroidism appears to play a role in promoting cancer progression, the underlying mechanisms of this association remain poorly understood and necessitate further research. Despite conflicting evidence regarding the impact of thyroid hormones on colorectal cancer development, their significance in influencing a patient’s overall condition should not be overlooked. Therefore, it is important to integrate strategies for controlling the endocrine profile and correcting its changes into standard cancer treatment protocols. Moreover, some publications report the effect of levothyroxine replacement therapy on reducing the risk of developing CRC. Investigating the interplay between metabolic syndrome and cancer, particularly through the lens of thyroid dysfunction, may contribute to the development of novel approaches to colorectal cancer management and improve patient outcomes.

About the Authors

S. Yu. Muraviev
Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

8-2 Trubetskaya Str., 119992 Moscow



E. A. Tarabin
Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

8-2 Trubetskaya Str., 119992 Moscow



V. A. Sidorova
Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

8-2 Trubetskaya Str., 119992 Moscow



V. S. Razumovsky
Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

8-2 Trubetskaya Str., 119992 Moscow



A. P. Fabrika
Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

8-2 Trubetskaya Str., 119992 Moscow



M. Ebrahimnezhad
Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

8-2 Trubetskaya Str., 119992 Moscow



A. M. Nikolaev
Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

8-2 Trubetskaya Str., 119992 Moscow



I. A. Tarasova
Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

8-2 Trubetskaya Str., 119992 Moscow



A. K. Yaylakhanyan
Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

8-2 Trubetskaya Str., 119992 Moscow



D. O. Konosevich
Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation

8-2 Trubetskaya Str., 119992 Moscow



References

1. Díez J.J., Cabrera L., Iglesias P., Benavent M., Argüello G., López G., Parralejo A. et al. Prevalence of cancer in patients with hypothyroidism: analysis using big data tools. Endocrinol. Diabetes Nutr. (Engl. Ed.). 2023;70 Suppl. 3:50–58. DOI: 10.1016/j.endien.2023.08.004.

2. Fahed G., Aoun L., Bou Zerdan M., Allam S., Bou Zerdan M., Bouferraa Y. et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 2022;23(2):786. DOI: 10.3390/ijms23020786.

3. Krashin E., Piekiełko-Witkowska A., Ellis M., Ashur-Fabian O. Thyroid hormones and cancer: a comprehensive review of preclinical and clinical studies. Front. Endocrinol. (Lausanne). 2019;10:59. DOI: 10.3389/fendo.2019.00059.

4. Verma D.P., Chaudhary S.C., Singh A., Sawlani K.K., Gupta K.K., Usman K. et al. Hypothyroidism in metabolic syndrome. Ann. Afr. Med. 2024;23(4):717–722. DOI: 10.4103/aam.aam_25_24.

5. Alwan H., Ribero V.A., Efthimiou O., Del Giovane C., Rodondi N., Duntas L. A systematic review and meta-analysis investigating the relationship between metabolic syndrome and the incidence of thyroid diseases. Endocrine. 2024;84(2):320–327. DOI: 10.1007/s12020-023-03503-7.

6. Shinkov A., Borissova A.M., Kovatcheva R., Atanassova I., Vlahov J., Dakovska L. The prevalence of the metabolic syndrome increases through the quartiles of thyroid stimulating hormone in a population-based sample of euthyroid subjects. Arq. Bras. Endocrinol. Metabol. 2014;58(9):926–932. DOI: 10.1590/0004-2730000003538.

7. Alsulami S.S., Baig M., Albeladi A.H., Alyoubi S.B., Alsubaie S.A., Albeladi S.A. et al. Correlation between subclinical hypothyroidism and metabolic syndrome: a retrospective study. Saudi J. Med. Med. Sci. 2023;11(3):250–256. DOI: 10.4103/sjmms.sjmms_225_22.

8. Luboshitzky R., Aviv A., Herer P., Lavie L. Risk factors for cardiovascular disease in women with subclinical hypothyroidism. Thyroid. 2002;12(5):421–425. DOI: 10.1089/105072502760043512.

9. Kek P.C., Ho S.C., Khoo D.H. Subclinical thyroid disease. Singapore Med. J. 2003;4(11):595–600.

10. Razvi S., Ingoe L., Keeka G., Oates C., McMillan C., Weaver J.U. The beneficial effect of L-thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J. Clin. Endocrinol. Metab. 2007;92(5):1715–1723. DOI: 10.1210/jc.2006-1869.

11. Scherübl H. Metabolisches syndrom und krebsrisiko [Metabolic syndrome and cancer risk]. Dtsch. Med. Wochenschr. 2022;147(16):1068–1077. DOI: 10.1055/a-1868-9164.

12. Park J.H., Choi M., Kim J.H., Kim J., Han K., Kim B et al. Metabolic Syndrome and the Risk of Thyroid Cancer: A Nationwide Population-Based Cohort Study. Thyroid. 2020;30(10):1496–1504. DOI: 10.1089/thy.2019.0699.

13. Seebacher V., Hofstetter G., Polterauer S., Reinthaller A., Grimm C., Schwameis R. et al. Does thyroid-stimulating hormone influence the prognosis of patients with endometrial cancer? A multicentre trial. Br. J. Cancer. 2013;109(1):215– 218. DOI: 10.1038/bjc.2013.282.

14. Liu Z., Lin C., Suo C., Zhao R., Jin L., Zhang T. et al. Metabolic dysfunction-associated fatty liver disease and the risk of 24 specific cancers. Metabolism. 2022;127:154955. DOI: 10.1016/j.metabol.2021.154955.

15. Van Tienhoven-Wind L.J., Dullaart R.P. Low-normal thyroid function and novel cardiometabolic biomarkers. Nutrients. 2015;7(2):1352–1377. DOI: 10.3390/nu7021352.

16. Bano A., Chaker L., Plompen E.P., Hofman A., Dehghan A., Franco O.H. et al. Thyroid Function and the Risk of Nonalcoholic Fatty Liver Disease: The Rotterdam Study. J. Clin. Endocrinol. Metab. 2016;101(8):3204–3211. DOI: 10.1210/jc.2016-1300.

17. Tao Y., Gu H., Wu J., Sui J. Thyroid function is associated with non-alcoholic fatty liver disease in euthyroid subjects. Endocr. Res. 2015;40(2):74–78. DOI: 10.3109/07435800.2014.952014.

18. Van den Berg E H., van Tienhoven-Wind L.J., Amini M., Schreuder T.C., Faber K.N., Blokzijl H. et al. Higher free triiodothyronine is associated with non-alcoholic fatty liver disease in euthyroid subjects: the Lifelines Cohort Study. Metabolism. 2017;67:62–71. DOI: 10.1016/j.metabol.2016.11.002.

19. Biondi B. Subclinical hypothyroidism in patients with obesity and metabolic syndrome: A Narrative Review. Nutrients. 2023;16(1):87. DOI: 10.3390/nu16010087.

20. Zhong L., Liu S., Yang Y., Xie T., Liu J., Zhao H. et al. Metabolic syndrome and risk of subclinical hypothyroidism: a systematic review and meta-analysis. Front. Endocrinol. (Lausanne). 2024;15:1399236. DOI: 10.3389/fendo.2024.1399236.

21. Petito G., Cioffi F., Magnacca N., de Lange P., Senese R., Lanni A. Adipose tissue remodeling in obesity: an overview of the actions of thyroid hormones and their derivatives. Pharmaceuticals (Basel). 2023;16(4):572. DOI: 10.3390/ph16040572.

22. Gómez-Izquierdo J., Filion K.B., Boivin J.F., Azoulay L., Pollak M., Yu O.H.Y. Subclinical hypothyroidism and the risk of cancer incidence and cancer mortality: a systematic review. BMC Endocr. Disord. 2020;20(1):83. DOI: 10.1186/s12902-020-00566-9.

23. Gagliardi F., Baldini E., Lori E., Cardarelli S., Pironi D., Lauro A. et al. Insights on the Association between thyroid diseases and colorectal cancer. J. Clin. Med. 2023;12(6):2234. DOI: 10.3390/jcm12062234.

24. Schiera G., Di Liegro C.M., Di Liegro I. Involvement of thyroid hormones in brain development and cancer. Cancers (Basel). 2021;13(11):2693. DOI: 10.3390/cancers13112693.

25. Moon S.Y., Son M., Cho J.H., Kim H.I., Han J.M., Bae J.C. et al. Association between metabolic dysfunction-associated steatotic liver disease and thyroid cancer. Thyroid. 2025;35(1):79–86. DOI: 10.1089/thy.2024.0522.

26. L’Heureux A., Wieland D.R., Weng C.H., Chen Y.H., Lin C.H., Lin T.H. et al. Association between thyroid disorders and colorectal cancer risk in adult patients in taiwan. JAMA Netw Open. 2019;2(5):e193755. DOI: 10.1001/jamanetworkopen.2019.3755.

27. Gauthier B.R., Sola-García A., Cáliz-Molina M.Á., Lorenzo P.I., Cobo-Vuilleumier N., Capilla-González V. et al. Thyroid hormones in diabetes, cancer, and aging. Aging Cell. 2020;19(11):e13260. DOI: 10.1111/acel.13260.

28. Williams C., DiLeo A., Niv Y., Gustafsson J.Å. Estrogen receptor beta as target for colorectal cancer prevention. Cancer Lett. 2016;372(1):48–56. DOI: 10.1016/j.canlet.2015.12.009.

29. Boursi B., Haynes K., Mamtani R., Yang Y.X. Thyroid dysfunction, thyroid hormone replacement and colorectal cancer risk. J. Natl. Cancer Inst. 2015;107(6):djv084. DOI: 10.1093/jnci/djv084.

30. Wang Y., Zhou R., Wang J. Relationship between hypothyroidism and endometrial cancer. Aging Dis. 2019;10(1):190– 196. DOI: 10.14336/AD.2018.0224.

31. Deligiorgi M.V., Trafalis D.T. The clinical relevance of hypothyroidism in patients with solid non-thyroid cancer: a tantalizing conundrum. J. Clin. Med. 2022;11(12):3417. DOI: 10.3390/jcm11123417.

32. Schmohl K.A., Han Y., Tutter M., Schwenk N., Sarker R.S.J., Steiger K. et al. Integrin αvβ3-dependent thyroid hormone effects on tumour proliferation and vascularization. Endocr. Relat. Cancer. 2020;27(12):685–697. DOI: 10.1530/erc-20-0353.

33. Lasa M., Contreras-Jurado C. Thyroid hormones act as modulators of inflammation through their nuclear receptors. Front. Endocrinol. (Lausanne). 2022;13:937099. DOI: 10.3389/fendo.2022.937099.

34. Schmohl K.A., Mueller A.M., Dohmann M., Spellerberg R., Urnauer S., Schwenk N. et al. Integrin αvβ3-mediated effects of thyroid hormones on mesenchymal stem cells in tumor angiogenesis. Thyroid. 2019;29(12):1843–1857. DOI: 10.1089/thy.2019.0413.

35. Hercbergs A., Lin H.-Y., Mousa S.A., Davis P.J. (Thyroid) hormonal regulation of breast cancer cells. Front. Endocrinol. 2023;13:1109555. DOI: 10.3389/fendo.2022.1109555.

36. Kennelly R., Kavanagh D.O., Hogan A.M., Winter D.C. Oestrogen and the colon: potential mechanisms for cancer prevention. Lancet Oncol. 2008;9(4):385–391. DOI: 10.1016/S1470-2045(08)70100-1.

37. Konstantinopoulos P.A., Kominea A., Vandoros G., Sykiotis G.P., Andricopoulos P., Varakis I. et al. Oestrogen receptor beta (ERbeta) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour’s dedifferentiation. Eur. J. Cancer. 2003;39(9):1251– 1258. DOI: 10.1016/s0959-8049(03)00239-9.

38. Rennert G., Rennert H.S., Pinchev M. et al. A case-control study of le vothyroxine and the risk of colorectal cancer. J. Natl. Cancer Inst. 2010;102(8):568–572. DOI: 10.1093/jnci/djq042.

39. Rostkowska O., Spychalski P., Dobrzycka M., Wilczyński M., Kachiński A.J., Obołończyk Ł. et al. Effects of thyroid hormone imbalance on colorectal cancer carcinogenesis and risk – a systematic review. Endokrynol. Pol. 2019;70(2):190–197. DOI: 10.5603/EP.a2019.0007.

40. Davis P.J., Ashur-Fabian O., Incerpi S., Mousa S.A. Editorial: non-genomic actions of thyroid hormones in cancer. Front. Endocrinol. (Lausanne). 2019;10:847. DOI: 10.3389/fendo.2019.00847.

41. Revilla G., Cedó L., Tondo M., Moral A., Pérez J.I., Corcoy R. et al. LDL, HDL and endocrine-related cancer: From pathogenic mechanisms to therapies. Semin. Cancer Biol. 2021;73:134–157. DOI: 10.1016/j.semcancer.2020.11.012.

42. Du Q., Zheng Z., Wang Y., Yang L., Zhou Z. Genetically predicted thyroid function and risk of colorectal cancer: a bidirectional Mendelian randomization study. J. Cancer Res. Clin. Oncol. 2023;149(15):14015–14024. DOI: 10.1007/s00432-023-05233-9.


Review

For citations:


Muraviev S.Yu., Tarabin E.A., Sidorova V.A., Razumovsky V.S., Fabrika A.P., Ebrahimnezhad M., Nikolaev A.M., Tarasova I.A., Yaylakhanyan A.K., Konosevich D.O. Thyroid dysfunction as a key link in the concept of mutual aggravation of colorectal cancer and metabolic syndrome: review. Bulletin of Siberian Medicine. 2025;24(4):172-183. (In Russ.) https://doi.org/10.20538/1682-0363-2025-4-172-183

Views: 69

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)