Preview

Bulletin of Siberian Medicine

Advanced search

Nonclinical study of the new immunotropic drug effectiveness in salmonella infection treatment

https://doi.org/10.20538/1682-0363-2021-2-95-101

Abstract

 The aim of the study was to evaluate the immunoregulatory activity of an experimental drug based on ultra-high dilutions of antibodies to MHC I and MHC II molecules against Salmonella enteritidis rif92.

Materials and methods. The drug tested: a sample of ultra-high water-alcohol dilutions of antibodies to MHC I and MHC II molecules applied to lactose powder (the theoretical level of the initial antibody concentration reduction is at least 1024 times). A model of non-lethal Salmonella infection  in chickens was induced by administering a virulent strain of Salmonella enteritidis rif92 with a concentration of 2.5 × 109 CFU/g in the volume of 0.5 ml/bird. The following groups were formed (n = 15 in each group): 1 – drug; 2 – drug + antibiotic at the median effective dose (ED 50); 3 – placebo; 4 – placebo + antibiotic at ED50; 5 – intact control. The duration of the experiment was 12 days. The studied parameters included the survival rate during the observation period; daily body weight; feed consumption for the entire period; pathogen concentration in the litter on day 3, 6, and 9; the presence and concentration of the pathogen in the liver and cecum on day 12; and the index of antimicrobial activity on day 12.

Results. In the groups receiving the experimental drug, the infectious process proceeded in a milder form and the bacterial load in chickens was lower. The bacterial count in the litter was reduced by two orders compared to the respective control when the drug was added both alone and in combination with the antibiotic. A protective effect of the experimental drug on the liver of the infected chickens was detected.

Conclusion. A pronounced immunoregulatory activity of the studied drug against Salmonella enteritidis rif92 in chickens was demonstrated for the first time. The results obtained allow to consider the drug as a promising agent
for the treatment of Salmonella infection.
 

About the Authors

M. G. Teymurazov
State Research Center for Applied Microbiology and Biotechnology (SRCAMB)
Russian Federation

24, Kvartal A, Obolensk, Moscow Region, 142279, Russian Federation



N. V. Petrova
Institute of General Pathology and Pathophysiology (IGPP); MATERIA MEDICA HOLDING LLC, Research and Production Company
Russian Federation

8, Baltiyskaya Str., Moscow, 125315, Russian Federation

47/1, Trifonovskaya Str., Moscow, 129272, Russian Federation



E. A. Karelina
MATERIA MEDICA HOLDING LLC, Research and Production Company
Russian Federation

47/1, Trifonovskaya Str., Moscow, 129272, Russian Federation



K. K. Ganina
MATERIA MEDICA HOLDING LLC, Research and Production Company
Russian Federation

47/1, Trifonovskaya Str., Moscow, 129272, Russian Federation



S. A. Tarasov
Institute of General Pathology and Pathophysiology (IGPP); MATERIA MEDICA HOLDING LLC, Research and Production Company
Russian Federation

8, Baltiyskaya Str., Moscow, 125315, Russian Federation

47/1, Trifonovskaya Str., Moscow, 129272, Russian Federation



O. I. Epstein
Institute of General Pathology and Pathophysiology (IGPP); MATERIA MEDICA HOLDING LLC, Research and Production Company
Russian Federation

8, Baltiyskaya Str., Moscow, 125315, Russian Federation

47/1, Trifonovskaya Str., Moscow, 129272, Russian Federation



References

1. https://www.who.int/ru/news-room/fact-sheets/detail/salmonella-(non-typhoidal) (дата обращения: 29.01.2020).

2. Пименов Н.В., Лаишевцев А.И., Пименова В.В. Роль возбудителей сальмонеллеза птиц в инфицировании и патологии человека. Russian Journal of Agricultural and SocioEconomic Sciences. 2017; 2 (62): 282–289. DOI: 10.18551/rjoas.2017-02.33.

3. Фисинин В.И. Обеспечение биобезопасности в птицеводстве. Птицепром. Спецвыпуск. 2017; S1: 58– 60.

4. Antunes P., Mourão J., Campos J., Peixe L. Salmonellosis: the role of poultry meat. Clinical Microbiology and Infection. 2016; 22 (2): 110–121. DOI:10.1016/j.cmi.2015.12.004.

5. EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control), 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA Journal. 2018; 16 (12): 262. DOI: 10.2903/j.efsa.2018.5500.

6. Проккоева Ж.А. Особенности бактериологических исследований цыплят, экспериментально инфицированных Salmonella enteritidis, на фоне применения пробиотического биокомплекса. БИО. 2018; 11: 9–11.

7. Chen Y., Glass K., Liu B., Hope K., Kirk M. Salmonella Infection in Middle-Aged and Older Adults: Incidence and Risk Factors from the 45 and Up Study. Foodborne Pathogens and Disease. 2016; 13 (12): 689–694. DOI: 10.1089/fpd.2016.2170.

8. Acheson D., Hohmann E.L. Nontyphoidal salmonellosis. Clinical Infectious Diseases. 2001; 32 (2): 263–269. DOI:

9. 1086/318457.

10. Поломошнов Н.А., Малышева Л.А. Эффективность использования пробиотиков для профилактики сальмонеллеза. Ветеринарная патология. 2012; 1 (39): 52–56.

11. Кафтырева Л.А., Егорова С.А., Макарова М.А., Забровская А.В., Матвеева З.Н., Сужаева Л.В., Войтенкова Е.В. Многообразие механизмов антибиотикорезистентности сальмонелл. Инфекция и иммунитет. 2011; 1 (4): 303–310. DOI: 10.15789/2220-7619-2011-4-303-310.

12. Liljebjelke K.A., Hofacre C.L., White D.G., Ayers S., Lee M.D., Maurer J.J. Diversity of antimicrobial resistance phenotypes in salmonella isolated from commercial poultry farms. Frontiers in Veterinary Science. 2017; 4: 96. DOI: 10.3389/fvets.2017.00096.

13. Wei Z., Xu X., Yan M., Chang H., Li Y., Kan B., Zeng M. Salmonella typhimurium and Salmonella enteritidis infections in sporadic diarrhea in children: source tracing and resistance to third-generation cephalosporins and ciprofloxacin. Foodborne Pathogens and Disease. 2019; 16 (4): 244–255. DOI: 10.1089/fpd.2018.2557.

14. McSorley S.J., Ehst B.D., Yu Y., Gewirtz A.T. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. The Journal of Immunology. 2002; 169 (7): 3914–3919. DOI: 10.4049/jimmunol.169.7.3914.

15. Pham O.H., McSorley S.J. Protective host immune responses to Salmonella infection. Future Microbiology. 2015; 10 (1): 101–110. DOI: 10.2217/fmb.14.98.

16. Salazar-Gonzalez R.-M., Srinivasan A., Griffin A., Muralimohan G., Ertel J.M., Ravindran R., Vella A.T., McSorley S.J. Salmonella flagellin induces bystander activation of splenic dendritic cells and hinders bacterial replication in vivo. The Journal of Immunology. 2007; 179 (9): 6169–6175. DOI: 10.4049/jimmunol.179.9.6169.

17. Новокшонов А.А., Соколова Н.В., Галеева Е.В., Курбанова Г.М., Портных О.Ю., Учайкин В.Ф. Иммунотерапия при острых кишечных инфекциях у детей. Опыт использования нового иммуномодулятора «Гепон». Детские инфекции. 2003; 1: 32–36.

18. Павелкина В.Ф., Еровиченков А.А., Пак С.Г. Совершенствование патогенетической терапии при заболеваниях бактериальной этиологии. Журнал инфектологии. 2012; 4 (3): 67–75.

19. Bunkin N.F., Shkirin A.V., Penkov N.V., Chirikov S.N., Ignatiev P.S., Kozlov V.A. The physical nature of mesoscopic inhomogeneities in highly diluted aqueous suspensions of protein particles. Physics of Wave Phenomena. 2019; 27 (2): 102–112. DOI: 10.3103/S1541308X19020043.

20. Chikramane P.S., Kalita D., Suresh A.K., Kane S.G., Bellare J.R. Why extreme dilutions reach non-zero asymptotes: a nanoparticulate hypothesis based on froth flotation. Langmuir. 2012; 28 (45): 15864–15875. DOI: 10.1021/la303477s.

21. Рыжкина И.С., Муртазина Л.И., Киселева Ю.В., Коновалов А.И. Самоорганизация и физико-химические свойства водных растворов антител к интерферону-гамма в сверхвысоком разведении. Доклады Академии наук. 2015; 462 (2): 185–189. DOI: 10.7868/S0869565215140170.

22. Higginson E.E., Simon R., Tennant S.M. Animal models for salmonellosis: applications in vaccine research. Clinical and Vaccine Immunology. 2016; 23 (9): 746–756. DOI: 10.1128/cvi.00258-16.

23. Guard-Petter J. The chicken, the egg and Salmonella enteritidis. Environmental Microbiology. 2001; 3 (7): 421– 430. DOI: 10.1046/j.1462-2920.2001.00213.x.

24. Wallis T.S., Galyov E.E. Molecular basis of Salmonella- induced enteritis. Molecular Microbiology. 2000; 36 (5): 997–1005. DOI: 10.1046/j.1365-2958.2000.01892.x.

25. Card R.M., Cawthraw S.A., Nunez-Garcia J., Ellis R.J., Kay G., Pallen M.J., Woodward M.J., Anjum M.F. An in vitro chicken gut model demonstrates transfer of a multidrug resistance plasmid from salmonella to commensal Escherichia coli. mBio. 2017: 8 (4): e00777– 007817. DOI: 10.1128/mbio.00777-17.

26. Охапкина В.Ю., Пяткова Н.В., Федотов А.К. Метод ускоренной оценки эффективности антибактериальных препаратов при экспериментальном бруцеллезе. Проблемы особо опасных инфекций. 2016; 2: 79–82. DOI: 10.21055/0370-1069-2016-2-79-82.

27. Зилов В.Г., Судаков К.В., Эпштейн О.И. Элементы информационной биологии и медицины. М.: МГУЛ, 2001: 248.

28. Эпштейн О.И. Феномен релиз-активности и гипотеза «пространственного» гомеостаза. Успехи физиологических наук. 2013; 44 (3): 54–76.

29. Гариб Ф.Ю., Ризопулу А.П. Взаимодействия патогенных бактерий с врожденными иммунными реакциями хозяина. Инфекция и иммунитет. 2012; 2 (3): 581–596. DOI: 10.15789/2220-7619-2012-3-581-596.

30. Костюченко М.В., Пономаренко Д.Г., Ракитина Е.Л., Логвиненко О.В., Санникова И.В., Дейнека Д.А., Голубь О.Г. Перспектива оценки антигенреактивности лимфоцитов in vitro для диагностики острого бруцеллеза. Инфекция и иммунитет. 2017; 7 (1): 91–96. DOI: 10.15789/2220-7619-2017-1-91-96.

31. Blander J.M. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation. Immunological Reviews. 2016; 272 (1): 65–79. DOI: 10.1111/imr.12428.

32. Faivre V., Lukaszewicz A.-C., Payen D. Downregulation of blood monocyte HLA-DR in ICU patients is also present in bone marrow cells. PLoS One. 2016; 11 (11): 15. DOI: 10.1371/journal.pone.0164489.

33. Zhu M., Dai J., Wang C., Wang Y., Qin N., Ma H., Song C., Zhai X., Yang Y., Liu J., Liu L., Li S., Liu J., Yang H.,

34. Zhu F., Shi Y., Shen H., Jin G., Zhou W., Hu Z. Fine mapping the MHC region identified four independent variants modifying susceptibility to chronic hepatitis B in Han Chinese. Human Molecular Genetics. 2016; 25 (6): 1225–1232. DOI: 10.1093/hmg/ddw003.

35. Фисинин В.И., Сурай П. Кишечный иммунитет у птиц: факты и размышления. Сельскохозяйственная биология. 2013; 48 (4): 3–25.


Review

For citations:


Teymurazov M.G., Petrova N.V., Karelina E.A., Ganina K.K., Tarasov S.A., Epstein O.I. Nonclinical study of the new immunotropic drug effectiveness in salmonella infection treatment. Bulletin of Siberian Medicine. 2021;20(2):95-101. https://doi.org/10.20538/1682-0363-2021-2-95-101

Views: 792


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)