Preview

Bulletin of Siberian Medicine

Advanced search

Predictors of an adverse course of heart failure with preserved left ventricular ejection fraction in patients with obstructive sleep apnea syndrome

https://doi.org/10.20538/1682-0363-2021-2-102-112

Abstract

 Aim. To study the relationship of obstructive respiratory disorders during sleep with subclinical development of right ventricular dysfunction and pulmonary hypertension, as well as with the risk of an adverse course of chronic heart failure (CHF) with preserved left ventricular ejection fraction (LVEF).

Materials and methods. The study included 86 men with moderate and severe forms of obstructive sleep apnea syndrome (OSAS) (with an apnea/hypopnea index (AHI) > 15 per hour). All patients had abdominal obesity and hypertension. Upon inclusion in the study, all patients underwent polysomnography and echocardiography according to the  standard protocol with an additional assessment of the fractional area  change in the right ventricular myocardium (ΔSRV) and the right ventricular  stroke work index (RVSWI). Also, the content of the N-terminal brain natriuretic peptide precursor (NT-proBNP) in the blood serum was  determined by enzyme immunoassay analysis. A six-minute walk test (6MWT) was performed after inclusion in the study and after 12 months of  follow-up. Depending on the course of CHF during the follow-up,  retrospectively, the patients were divided into 2 groups: with an unfavorable (n = 33) and favorable (n = 53) prognosis.

Results. A significant relationship between AHI and ΔSRV, RVSWI, NT-proBNP, and 6MWT was revealed. Based on the results of one-way correlation analysis, it was found that ΔSRV (odds ratio (OR) 2.51; 95%  confidence interval (CI) 2.42–3.24; p = 0.0009), NT-proBNP (OR 1.92; 95% CI  1.32–2.78; p = 0.003), and AHI (OR 3.93; 95% CI 2.87–4.11; p = 0.018) were predictors of an adverse course of CHF. In a multivariate analysis, it was found that AHI was an independent predictor of an adverse course of CHF (OR 3.49; 95% CI 2.17–11.73; p = 0.0008), while the addition of NT-proBNP improved risk stratification of an adverse course of CHF (OR 4.66; 95% CI 3.87–13.11; p < 0.0001).

Conclusion. The fractional area change in the right ventricular myocardium (ΔSRV) can be considered as a non-invasive marker for determining the  emerging right ventricular dysfunction and predicting adverse cardiovascular events in patients with preserved LVEF and OSAS. Moreover, the combined use of echocardiographic (ΔSRV) and laboratory (NT-proBNP) markers can improve risk stratification of CHF progression.  

About the Authors

A. T. Teplyakov
Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

111а, Kievskaya Str., Tomsk, 634012, Russian Federation



A. V. Yakovlev
Novosibirsk State Medical University (NSMU)
Russian Federation

52, Krasniy Pr., Novosibirsk, 630091, Russian Federation



S. N. Shilov
Novosibirsk State Medical University (NSMU)
Russian Federation

52, Krasniy Pr., Novosibirsk, 630091, Russian Federation



N. F. Yakovleva
Novosibirsk State Medical University (NSMU)
Russian Federation

52, Krasniy Pr., Novosibirsk, 630091, Russian Federation



E. N. Berezikova
Novosibirsk State Medical University (NSMU)
Russian Federation

52, Krasniy Pr., Novosibirsk, 630091, Russian Federation



E. V. Grakova
Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

111а, Kievskaya Str., Tomsk, 634012, Russian Federation



K. V. Kopeva
Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
Russian Federation

111а, Kievskaya Str., Tomsk, 634012, Russian Federation



S. D. Mayanskaya
Kazan State Medical University (KSMU)
Russian Federation

49, Butlerov Str., Kazan, 420012, Russian Federation



References

1. Butt M., Dwivedi G., Khair O., Lip G.Y.H. Obstructive sleep apnea and cardiovascular disease. Int. J. Cardiol. 2010; 139: 7–16. DOI: 10.1016/j.ijcard.2009.05.021.

2. Чазова И.Е., Литвин А.Ю. Синдром обструктивного апноэ сна и связанные с ним сердечно-сосудистые осложнения. Кардиология. 2002; 11: 86–92.

3. Marin J.M., Agusti A., Villar I., Forner M., Nieto D., Carrizo S.J., Barbé F., Vicente E., Wei Y., Nieto F.J., Jelic S. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA. 2012; 307 (20): 2169–2176. DOI: 10.1097/sa.0b013e31827f34f1.

4. Mentz R.J., Fiuzat M. Sleep-disordered breathing in patients with heart failure. Heart Fail Clin. 2014; 10 (2): 243–250. DOI: 10.1016/j.hfc.2013.10.001.

5. Bitter T., Westerheide N., Prinz C., Hossain M.S., Vogt .J, Langer C., Horstkotte D., Oldenburg O. Cheyne-stokes respiration and obstructive sleep apnoea are independent risk factors for malignant ventricular arrhythmias requiring appropriate cardioverter–defibrillator therapies in patients with congestive heart failure. Eur. Heart J. 2011; 32: 61–74. DOI: 10.1093/eurheartj/ehq327.

6. Lindberg E., Gislason T. Epidemiology of sleep-related obstructive breathing. Sleep Med. Rev. 2000; 4: 321–327. DOI: 10.1053/smrv.2000.0118.

7. Lindberg E. Epidemiology of OSA. Eur. Respir. Mon. 2010; 50: 51–68. DOI: 10.1183/1025448x.00025909.

8. Peppard P.E., Young T., Barnet J.H., Palta M., Hagen E.W., Hla K.M. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 2013; 177 (9): 1006–1014. DOI: 10.1093/aje/kws342.

9. Fletcher E.C. Effect of episodic hypoxia on sympathetic activity and blood pressure. Respir. Physiol. 2000; 119 (2–3): 189–197. DOI: 10.1016/s0034-5687(99)00114-0.

10. Ziegler M.G., Mills P.J., Loredo J.S., Ancoli-Israel S., Dimsdale J.E. Effect of continuous positive airway pressure on sympathetic nervous activity in patients with obstructive sleep apnea. Chest. 2001; 120 (3): 887–893. DOI: 10.1378/chest.120.3.887.

11. Kasai T., Bradley T.D. Obstructive sleep apnea and heart failure: pathophysiologic and therapeutic implications. J. Am. Coll. Cardiol. 2011; 57 (2): 119–127. DOI: 10.1016/j.jacc.2010.08.627.

12. Frantz R.P., Farber H.W., Badesch D.B., Elliott C.G., Frost A.E., McGoon M.D., Zhao C., Mink D.R., Selej M., Benza R.L. Baseline and serial brain natriuretic peptide level predicts 5-year overall survival in patients with pulmonary arterial hypertension. Chest. 2018; 154 (1): 126–135. DOI: 10.1016/j.chest.2018.01.009.

13. Tugcu A., Yildirimturk O., Tayyareci Y. Demiroglu C., Aytekin S. Evaluation of subclinical right ventricular dysfunction in obstructive sleep apnea patients using velocity vector imaging. Circ. J. 2010; 74 (2): 312–319. DOI: 10.1253/circj.cj-09-0562.

14. Van Deursen V.M., Urso R., Laroche C., Damman K., Dahlström U., Tavazzi L., Maggioni A.P., Voors A.A. Comorbidities in patients with heart failure: an analysis of the European Heart Failure Pilot Survey. Eur. J. Heart Fail. 2014; 16 (1): 103–111. DOI: 10.1016/s0735-1097(13)60738-x.

15. Schulz R., Grebe M., Eisele H.J., Mayer K., Weissmen N. Obstructive sleep apnea-related cardiovascular disease. Med. Klin. (Munich). 2006; 101 (4): 321–327. DOI: 10.1159/000325110.

16. Williams B., Mancia G., Spiering W., Agabiti Rosei E., Azizi M., Burnier M., Clement D.L., Coca A., de Simone G., Dominiczak A., Kahan T., Mahfoud F., Redon J., Ruilope L., Zanchetti A., Kerins M., Kjeldsen S.E., Kreutz R., Laurent S., Lip G.Y.H., McManus R., Narkiewicz K., Ruschitzka F., Schmieder R.E., Shlyakhto E., Tsioufis C., Aboyans V., Desormais I. ESC scientific document group. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 2018; 39 (33): 3021–3104. DOI: 10.1093/eurheartj/ehy339.

17. Lim H.E., Kim Y.H., Kim S.H., Kim E.J., Pak H.N., Kim Y.H., Baik I., Shin C. Impact of obstructive sleep apnea on the atrial electromechanical activation time. Circ. J. 2009; 73 (2): 249–255. DOI: 10.1253/circj.cj-08-0813.

18. Sanner B.M., Konermann M., Sturm A., Muller H.J., Zidek W. Right ventricular dysfunction in patients with obstructive sleep apnea syndrome. Eur. Respir. J. 1997; 10 (9): 945–951. DOI: 10.1183/09031936.97.10092079.

19. Romero-Corral A., Somers V.K., Pellikka P.A., Olson E.J., Bailey K.R., Korinek J., Orban M., Sierra-Johnson J., Kato M., Amin R.S., Lopez-Jimenez F. Decreased right and left ventricular myocardial performance in obstructive sleep apnea Chest. 2007; 132 (6): 1863–1870. DOI: 10.1378/chest.07-0966.

20. Awdish R., Cajigas H. Definition, epidemiology and registries of pulmonary hypertension. Heart Fail Rev. 2016; 21 (3): 223–228. DOI: 10.1007/s10741-015-9510-y.

21. Benza R.L., Miller D.P., Gomberg-Maitland M., Frantz R.P., Foreman A.J., Coffey C.S., Frost A., Barst R.J., Badesch D.B., Elliott C.G., Liou T.G., McGoon M.D. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2010; 122 (2); 164–172. DOI: 10.1161/circulationaha.109.898122.

22. Tugcu A., Guzel D., Yildirimturk O., Aytekin S. Evaluation of right ventricular systolic and diastolic function in patients with newly diagnosed obstructive sleep apnea syndrome without hypertension. Cardiology. 2009; 113 (3): 184–192. DOI: 10.1159/000193146.

23. Weitzenblum E., Krieger J., Apprill M., Vallée E., Ehrhart M., Ratomaharo J., Oswald M., Kurtz D. Daytime pulmonary hypertension in patients with obstructive sleep apnea syndrome. Am. Rev. Respir. Dis. 1988; 138 (2): 345–349. DOI: 10.1164/ajrccm/138.2.345.

24. Chaouat A., Weitzenblum E., Krieger J., Oswald M., Kessler R. Pulmonary hemodynamics in the obstructive sleep apnea syndrome: Results in 220 consecutive patients. Chest. 1996; 109 (2): 380–386. DOI: 10.1378/chest.109.2.380.

25. Bradley T.D., Rutherford R., Grossman R.F., Lue F., Zamel N., Moldofsky H., Zamel N., Phillipson E.A. Physiological determinants of nocturnal arterial oxygenation in patients with obstructive sleep apnea. J. Appl. Physiol. 1985; 59 (5): 1364–1368. DOI: 10.1152/jappl.1985.59.5.1364.

26. Fletcher E.C., Schaaf J.W., Miller J., Fletcher J.C. Long-term cardiopulmonary sequelae in patients with sleep apnea and chronic lung disease. Am. Rev. Respir. Dis. 1987; 135 (3): 525–533. DOI: 10.1378/chest.92.4.604.

27. Arias M.A., García-Río F., Alonso-Fernández A., Martínez I., Villamor J. Pulmonary hypertension in obstructive sleep apnoea: Effects of continuous positive airway pressure: a randomized, controlled cross-over study. Eur. Heart J. 2006; 27 (9): 1106–1113. DOI: 10.1093/eurheartj/ehi807.

28. Epstein L.J., Kristo D., Strollo P.J. Jr, Friedman N., Malhotra A., Patil S.P., Ramar K., Rogers R., Schwab R.J., Weaver E.M., Weinstein M.D., Adult obstructive sleep apnea task force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 2009; 5 (3): 263–276. DOI: 10.5664/jcsm.27497.

29. Nakamura S., Asai K., Kubota Y., Murai K., Takano H., Tsukada Y.T., Shimizuet W. Impact of sleep- disordered breathing and efficacy of positive airway pressure on mortality in patients with chronic heart failure and sleepdisordered breathing: a meta-analysis. Clin. Res. Cardiol. 2015; 104 (3): 208–216. DOI: 10.1007/s00392-014-0774-3.


Review

For citations:


Teplyakov A.T., Yakovlev A.V., Shilov S.N., Yakovleva N.F., Berezikova E.N., Grakova E.V., Kopeva K.V., Mayanskaya S.D. Predictors of an adverse course of heart failure with preserved left ventricular ejection fraction in patients with obstructive sleep apnea syndrome. Bulletin of Siberian Medicine. 2021;20(2):102-112. https://doi.org/10.20538/1682-0363-2021-2-102-112

Views: 870


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)