Preview

Bulletin of Siberian Medicine

Advanced search

Predictors of positive steps in the five-step stress echocardiography protocol in patients with postinfarction cardiosclerosis

https://doi.org/10.20538/1682-0363-2025-2-106-115

Abstract

Aim. To study the frequency and predictors of positive steps in five-step stress echocardiography (SE) in patients with previous myocardial infarction (MI).
Materials and methods. The single-center study included 75 patients (61.6 ± 9.8 years, 84% men) with previous MI. The median duration of MI was 1,231.0 (381.5; 2,698.5) days. All patients underwent exercise SE according to the five-step protocol. At step A wall motion abnormalities (WMA) were detected, at step B – the sum of B-lines, at step C – contractile reserve (CR) of the left ventricle (LV), at step D – coronary reserve (CorR) in the left anterior descending artery, and at step E – heart rate reserve.
Results. The frequency of positive steps was 36.0% for step A, 18.7% for step B, 80.0% for step C, 53.3% for step D, and 50.7% for step E. Following the multivariate analysis, predictors of a positive step A (resting diastolic blood pressure (BP), p = 0.030, resting WMA index, p = 0.007), step B (taking β-blockers, p = 0.035; left ventricular (LV) mass index, p = 0.005), step C (increase in systolic BP (SBP), p = 0.011; increase in LV end-diastolic volume, p = 0.019; increase in LV ejection fraction, p = 0.008), and step D (taking angiotensin II receptor blockers, p = 0.026; increase in SBP, p = 0.012; increase in LV force, p = 0.038) were revealed.
Conclusion. Identification of predictors of WMA during exercise, subclinical pulmonary congestion, and a decrease in CR and CorR in patients with previous MI may be a target for therapeutic intervention in order to delay the development of adverse cardiovascular events.

About the Authors

T. M. Timofeeva
Peoples’ Friendship University of Russia (RUDN University); V.V. Vinogradov University Clinical Hospital (branch) of the Peoples’ Friendship University of Russia
Russian Federation

8 Miklukho-Maklaya St., 117198 Moscow, Russian Federation

61 Vavilova St., 117292, Moscow, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article. 



A. F. Safarova
Peoples’ Friendship University of Russia (RUDN University); V.V. Vinogradov University Clinical Hospital (branch) of the Peoples’ Friendship University of Russia
Russian Federation

8 Miklukho-Maklaya St., 117198 Moscow, Russian Federation

61 Vavilova St., 117292, Moscow, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article. 



G. S. Pavlikov
V.V. Vinogradov University Clinical Hospital (branch) of the Peoples’ Friendship University of Russia
Russian Federation

61 Vavilova St., 117292, Moscow, Russian Federation 


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article. 



D. N. Vladelshchikova
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

8 Miklukho-Maklaya St., 117198 Moscow, Russian Federation


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article. 



Zh. D. Kobalava
Peoples’ Friendship University of Russia (RUDN University)
Russian Federation

8 Miklukho-Maklaya St., 117198 Moscow, Russian Federation


Competing Interests:

The authors declare the absence of obvious or potential conflicts of interest related to the publication of this article. 



References

1. Gho J.M.I.H., Schmidt A.F., Pasea L., Koudstaal S., Pujades-Rodriguez M., Denaxas S. et al. An electronic health records cohort study on heart failure following myocardial infarction in England: incidence and predictors. BMJ Open. 20183;8(3):e018331. DOI: 10.1136/bmjopen-2017-018331.

2. Benjamin E.J., Virani S.S., Callaway C.W., Chamberlain A.M., Chang A.R., Cheng S. et al. American Heart Association council on epidemiology and prevention statistics committee and stroke statistics subcommittee. heart disease and stroke statistics-2018 Update: a report from the american heart association. Circulation. 2018;137(12):e67–e492. DOI: 10.1161/CIR.0000000000000558.

3. Ciampi Q., Zagatina A., Cortigiani L., Gaibazzi N., Borguezan Daros C., Zhuravskaya N. et al. Stress Echo 2020 study group of the italian society of echocardiography and cardiovascular imaging. functional, anatomical, and prognostic correlates of coronary flow velocity reserve during stress echocardiography. J. Am. Coll. Cardiol. 2019;74(18):2278–2291. DOI: 10.1016/j.jacc.2019.08.1046.

4. Scali M.C., Zagatina A., Ciampi Q., Cortigiani L., D’Andrea A., Daros C.B. et al. Stress Echo 2020 Study Group of the Italian society of echocardiography and cardiovascular imaging. Lung ultrasound and pulmonary congestion during stress echocardiography. JACC Cardiovasc. Imaging. 2020;13(10):2085–2095. DOI: 10.1016/j.jcmg.2020.04.020.

5. Bombardini T., Zagatina A., Ciampi Q., Arbucci R., Merlo P.M., Lowenstein Haber D.M. et al. Hemodynamic heterogeneity of reduced cardiac reserve unmasked by volumetric exercise echocardiography. J. Clin. Med. 2021;10:2906. DOI: 10.3390/jcm10132906.

6. Cortigiani L., Carpeggiani C., Landi P., Raciti M., Bovenzi F., Picano E. Usefulness of blunted heart rate reserve as an imaging-independent prognostic predictor during dipyridamole stress echocardiography. Am. J. Cardiol. 2019;124(6):972–977. DOI: 10.1016/j.amjcard.2019.06.017.

7. Sicari R., Cortigiani L. The clinical use of stress echocardiography in ischemic heart disease. Cardiovasc. Ultrasound. 2017;15(1):7. DOI: 10.1186/s12947-017-0099-2.

8. Cortigiani L., Ramirez P., Coltelli M., Bovenzi F., Picano E. Drop-off in positivity rate of stress echocardiography based on regional wall motion abnormalities over the last three decades. Int. J. Cardiovasc. Imaging. 2019;35(4):627–632. DOI: 10.1007/s10554-018-1501-3.

9. Rozanski A., Berman D. Optimizing the assessment of patient clinical risk at the time of cardiac stress testing. JACC Cardiovasc. Imaging. 2020;13(2–2):616–623. DOI: 10.1016/j.jcmg.2019.01.038.

10. Ciampi Q., Zagatina A., Cortigiani L., Wierzbowska-Drabik K., Kasprzak J.D., Haberka M. et al. Prognostic value of stress echocardiography assessed by the ABCDE protocol. Eur. Heart J. 2021;42(37):3869–3878. DOI: 10.1093/eurheartj/ehab493.

11. Elhendy A., Mahoney D.W., Khandheria B.K., Burger K., Pellikka P.A. Prognostic significance of impairment of heart rate response to exercise: impact of left ventricular function and myocardial ischemia. J. Am. Coll. Cardiol. 2003;42(5):823–830. DOI: 10.1016/s0735-1097(03)00832-5.

12. Chaowalit N., McCully R.B., Callahan M.J., Mookadam F., Bailey K.R., Pellikka P.A. Outcomes after normal dobutamine stress echocardiography and predictors of adverse events: long-term follow-up of 3014 patients. Eur. Heart J. 2006;27(24):3039–3044. DOI: 10.1093/eurheartj/ehl393.

13. Bulluck H., Go Y.Y., Crimi G., Ludman A.J., Rosmini S., Abdel-Gadir A. et al. Defining left ventricular remodeling following acute ST-segment elevation myocardial infarction using cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2017;19(1):26. DOI: 10.1186/s12968-017-0343-9.

14. Gold M.R., Daubert C., Abraham W.T., Ghio S., St. John Sutton M., Hudnall J.H. The effect of reverse remodeling on long-term survival in mildly symptomatic patients with heart failure receiving cardiac resynchronization therapy: results of the REVERSE study. Heart Rhythm. 2015;12(3):524–530. DOI: 10.1016/j.hrthm.2014.11.014.

15. Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C. et al.; ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 202;41(3):407–477. DOI: 10.1093/eurheartj/ehz425. Erratum in: Eur. Heart J. 2020;41(44):4242. DOI: 10.1093/eurheartj/ehz825.

16. Hanna P., Shivkumar K., Ardell J.L. Calming the nervous heart: autonomic therapies in heart failure. Card. Fail Rev. 2018;4(2):92–98. DOI: 10.15420/cfr.2018.20.2.

17. Neumann F.J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U. et al. ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019;40(2):87–165. DOI: 10.1093/eurheartj/ehy394. Erratum in: Eur. Heart J. 2019;40(37):3096. DOI: 10.1093/eurheartj/ehz507.

18. Takahashi J., Suda A., Nishimiya K., Godo S., Yasuda S., Shimokawa H. Pathophysiology and diagnosis of coronary functional abnormalities. Eur. Cardiol. 2021;16:e30. DOI: 10.15420/ecr.2021.23.

19. Benetos A., Thomas F., Bean K., Gautier S., Smulyan H., Guize L. Prognostic value of systolic and diastolic blood pressure in treated hypertensive men. Arch. Intern. Med. 2002;162(5):577–581.

20. D’Agostino R.B., Belanger A.J., Kannel W.B., Cruickshank J.M. Relation of low diastolic blood pressure to coronary heart disease death in presence of myocardial infarction: the Framingham Study. BMJ. 1991;303:385–389.

21. Mussa B.M., Hamoudi R.A., Abusnana S.E. Association trends between antihypertensive drug therapies and diastolic hypotension in Emirati patients with type 2 diabetes: a single-center retrospective longitudinal study. Diabetes Ther. 2018;9(5):1853–1868. DOI: 10.1007/s13300-018-0469-2.

22. Merli E., Ciampi Q., Scali M.C., Zagatina A., Merlo P.M., Arbucci R. et al. Stress Echo 2020 and 2030 study group of the italian society of echocardiography and cardiovascular imaging (SIECVI). Pulmonary congestion during exercise stress echocardiography in ischemic and heart failure patients. Circ. Cardiovasc. Imaging. 2022;15(5):e013558. DOI: 10.1161/CIRCIMAGING.121.013558.

23. Bouzas-Mosquera C., Bouzas-Mosquera A., Peteiro J. Exaggerated hypertensive response to exercise and myocardial ischaemia in patients with known or suspected coronary artery disease. Rev. Clin. Esp. 2018;218(1):7–12. DOI: 10.1016/j.rce.2017.07.005

24. Picano E., Ciampi Q., Citro R., D’Andrea A., Scali M.C., Cortigiani L. Stress echo 2020: The international stress echo study in ischemic and non-ischemic heart disease. Cardiovasc. Ultrasound. 2017;15(1):3. DOI: 10.1186/s12947-016-0092-1.

25. Wang Y., Yin L. Noninvasive identification and therapeutic implications of supernormal left ventricular contractile phenotype. Explor. Cardiol. 2024;2:97–113. DOI: 10.37349/ec.2024.0002.

26. Rimoldi O., Rosen S.D., Camici P.G. The blunting of coronary flow reserve in hypertension with left ventricular hypertrophy is transmural and correlates with systolic blood pressure. J. Hypertens. 2014;32(12):2465-71; discussion 2471. DOI: 10.1097/HJH.0000000000000338.

27. Picano E., Bombardini T., Kovačević Preradović T., Cortigiani L., Wierzbowska-Drabik K., Ciampi Q. Left ventricular contractile reserve in stress echocardiography: the bright side of the force. Kardiol. Pol. 2019;77(2):164–172. DOI: 10.5603/KP.a2019.0002.

28. Kassiotis C., Rajabi M., Taegtmeyer H. Metabolic reserve of the heart: the forgotten link between contraction and coronary flow. Prog. Cardiovasc. Dis. 2008;51(1):74–88. DOI: 10.1016/j.pcad.2007.11.005.


Review

For citations:


Timofeeva T.M., Safarova A.F., Pavlikov G.S., Vladelshchikova D.N., Kobalava Zh.D. Predictors of positive steps in the five-step stress echocardiography protocol in patients with postinfarction cardiosclerosis. Bulletin of Siberian Medicine. 2025;24(2):106-115. (In Russ.) https://doi.org/10.20538/1682-0363-2025-2-106-115

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1682-0363 (Print)
ISSN 1819-3684 (Online)